

Maker Guide
For Advanced Users

Credits
All pictures showing the Ibtikar Maker board interfaced with other modules are created using Fritzing. Fritzing is an
open-source hardware initiative that makes electronics accessible as a creative material for anyone. Ibtikar Maker
has developed their own library but also uses material from libraries owned by others.

Contents
Getting Started with the Ibtikar Maker Board 8

Introduction to Microcontrollers ... 8

Programming the Microcontroller ..9

The Ibtikar Maker Board ... 10

Creating Your First Program 26

Arduino Interface ...26

Your First Program ...31

Installing the Maker Library ...35

Before You Start ...37

Maker Activities 40

On-Board LED ... 40

LED Grid ..42

Read the Buttons ...49

Authored by Mohannad Takrouri

ISBN: 978-9948-38-696-4
Copyright © 2019 Ibtikar Edu Tech Solutions

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written consent of Ibtikar Edu Tech Solutions, including, but not limited to, network storage or transmission, or broadcast
for distance learning, except in the case of brief quotations embedded in critical articles or reviews.

Exclusive rights by Ibtikar Edu Tech Solutions for manufacture and export. This book cannot be re-exported from the country to which it is sold by
Ibtikar Edu Tech Solutions.

While the advice and information in this book is believed to be true and accurate at the date of publication, neither the author nor the publisher
can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.
Ibtikar Edu Tech Solutions, and its dealers and distributors will not be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.
Ibtikar Edu Tech Solutions has endeavored to provide trademark information of the companies and products mentioned in this book by the
appropriate use of capitals. However, Ibtikar Edu Tech Solutions cannot guarantee the accuracy of this information.

Read the Temperature ..52

Read Ambient Light ..54

Buzzer ..55

Read the Sound Level ...58

Pin Pads ... 60

NeoPixels ...64

Triple Axis Accelerometer ..69

Advanced Activities 79

Creating Your Own Functions ...79

Adding More Sensors..83

Using an Interrupt ...87

Maker Servo/Expansion Shield 95

Why Do We Need It?..95

Powering the Shield ...97

Activities ..97

Maker Speaks Python 114

What is Python? ...114

Python and the Ibtikar Maker Board ..115

Points to Keep in Mind .. 118

Real-time Logging using Maker and Python 119

Appendix 1: Arduino Driver Installation 124

Appendix 2: Maker Commands List 126

Arduino-Specific Functions ..126

Python-Specific Functions ... 127

Common Functions ..128

8 9

Programming the MicrocontrollerGetting Started with the Ibtikar Maker Board
Introduction to Microcontrollers

Definition
A microcontroller is a small computer on a single chip.
Unlike your personal computer which can do different
tasks at the same time, the microcontroller can only do
one task at a time.

Did You Know?

The word micro means very small.

A microcontroller is usually embedded inside a
system. You can think of it as the brain of a system.

If the system has an input unit for sensing the
environment, a control unit for processing the received
signals and an output unit for sending out information
or to control an output device, then it can be called an
embedded system.

Where Do You Find Embedded Systems?
Embedded systems control many devices in common
use today. You can find microcontrollers in washing
machines, microwave ovens, cars, elevators and any
smart machine.

An example of an embedded system is the air
conditioner unit that you use in your home and in your
car. The air conditioner cools down the air by removing
its heat. The main controller of this unit is an embedded
computer system that senses the temperature of the
room or car, compares it with the desired temperature
you choose, then controls the cooling process to adjust
the temperature.

One of the most well known microcontrollers, is the
Arduino board. The Arduino microcontroller is an easy-
to-use board with many ports for input and output that
can be programmed to do certain jobs.

What Is a Program?
A program is a set of commands and instructions that
can be downloaded to a computer or a microcontroller
to do a specific task.

Computers have their own language which is based
on two numbers, 0 and 1. It is very difficult for us as
humans to write in this language. Because of this,
programmers have created high level languages which
allow us to write computer programs in a language
that is like the language we understand. A compiler is
then used to convert the program into the computer
language. This makes it easy for us to modify and
understand the programs that are written.

Types of Programming
Microcontrollers can be programmed using either a
visual programming interface or a text-based one. In
visual programming, you can use graphical elements to
create programs. You can also drag and drop program
elements, click, use menus, forms, dialogue boxes and
so on. Behind each block of your program, there are
tens or even hundreds of lines of code. This type of

programming helps new users to easily understand
programming.

The other type of programming is text-based. In
text-based programming, you must understand the
language syntax and rules. You can cut, copy, and
paste your code which gives you more flexibility
compared to dragging and dropping one block at a
time.

10 11

The Ibtikar Maker Board

The Hardware

Size
The Ibtikar Maker board is a small, hexagon-shaped microcontroller board, designed and developed in the United
Arab Emirates. The following two figures show the front and the back of the board.

BackFront

 � triple axis accelerometer

 � 8 input/output pins of which 7 of them can act as
capacitive touch inputs

 � XBEE Socket to allow for Wi-Fi or Bluetooth
expansion

 � Arduino compatible microcontroller (ATmega32u4,
16 MHz crystal)

Features
The Ibtikar Maker board has the following features:

 � 25 LEDs in grid formation

 � 10 NeoPixel RGB LEDs

 � 2 push buttons (left and right)

 � temperature sensor

 � ambient light sensor

 � sound sensor

 � mini speaker (magnetic buzzer)

12 13

4. Power_Pads
These pads can supply power to external input or

output modules. There are three ground pins,
two 5V pins and one Vin pin. The Vin pin has
the same voltage as the one coming from the

external battery connector.

5. Pin_Pads
These pads can be interfaced with extra input and
output modules allowing you to extend the
capabilities of your Maker board. You can do this by

adding another push button for example, or even
a module like a motion or a flame sensor, both
of which are not on the board.

Some of the pins allow you to communicate
between other boards or components. Others allow
you to read and write analog and digital signals.
These pins are explained in detail in the next
section.

All these pads can be accessed either from the front or
the back side of the board.

Front and Back
Before you start using the Ibtikar Maker board, it is
important for you to know where each component is,
and its purpose.

On the front side, there are the following components:

1. LED_Grid
There are 25 LEDs which you can turn ON or OFF.

Each LED can be controlled individually, which
allows you to create patterns. For example, you
can show letters, numbers, text, emojis or any

other pattern you like.

Did you Know?

LED stands for Light Emitting Diode. An LED is
not the same as the original light bulb invented
by Thomas Edison. It has no filament or special
wire that produces light when electricity passes
through it. LEDs use advanced semiconductor
material, the same material found inside computer
chips. LEDs are better than traditional light bulbs.
They last longer, are more robust and use much
less power.

2. NeoPixels
The Ibtikar Maker has 10 RGB LEDs. RGB stands
for Red, Green and Blue which are the basic

colours. Unlike the 25 LEDs which cannot change
their colour, the RGB LEDs can be programmed
to show any colour by combining the three basic

colours. Think of each pixel as three small LEDs
combined, with each of these LEDs being a
different colour (Red, Green and Blue).

3. Push_Buttons
On the front of the board, there are two push

buttons labelled, A and B. Button A is to the left of
the board, while button B is to the right. These
two buttons are user input components on your
board. This means that you can program your

board to detect when they are pressed or released.
Pressed means 1 and released means 0.

14 15

Accelerometer can also detect dynamic acceleration:
the sudden start or stop of an acceleration.

Note

The Ibtikar Maker accelerometer can sense the
three axes (X, Y and Z). You can identify the
positive and negative directions of each axis by
looking at the small three-axis drawing next to the
sensor.

On the back side of the board, there are the following
components:

1. Temperature_Sensor
This is an analog sensor which measures the board

temperature.

2. Light_Sensor
This is an analog sensor which measures the

ambient light in the environment. The analog light
sensor gives values between 0 and 1023.

3. Buzzer_(Mini_Speaker)
This is a magnetic buzzer which can play tones.

By controlling the frequency going to the buzzer,
you can generate different tones.

4. Sound_Sensor
This is an analog sound level sensor. You can use

it to detect if there is a clap/sound near the board.
The sensor reads values between 0 and 1023.

5. Triple-Axis_Accelerometer
This sensor is in the middle of the board.
Accelerometers are used to measure acceleration,
which is how fast something is speeding up or
down. An accelerometer can measure static

acceleration like gravity, which is useful in
detecting tilt, like when your phone tilts.

16 17

6. XBEE_Sockets
These sockets allow for Wi-Fi or Bluetooth

expansion. This is useful if you want to wirelessly
control your Maker or read from it. You can use
your phone or tablet, for example, to connect to

the Maker board.

Note

The Wi-Fi/Bluetooth module is not included in
the kit and can be purchased separately.

Beside each socket there are some fine, white lines
drawn on the board. These lines help you to connect
the Wi-Fi/Bluetooth module in the right orientation.

7. On-Board_LED
This LED can be controlled by the user and is

connected to pin 13.

8. Micro-USB_Socket
This socket allows you to connect to your computer

using a USB cable. You can then program your
Maker board, send and receive data and power

the board.

9. Power_LED
This LED turns ON when your Maker is powered.

10. Reset_Button
This button restarts or resets the board.

11. Battery_Connecter
This connecter serves as an external power supply

source. You use it to power your board when the
USB cable is not connected. This can be
extremely useful when you do not want your

project to be attached to a computer all the time.

Note

The supply voltage should be between 6V to
9V. Supplying the board with a voltage different
to that recommended, may cause the board to
malfunction or even damage it.

18 19

Pin Configuration
The Maker board has multiple pins. Some of these pins are external (i.e. on the outer edge of the Maker) and some
are internal, like the two buttons. It is important to know what each pin is connected to or capable of, to give you full
control of your Maker board.

External Pins:

Pin Function Digital (I/O) Analog (I) Serial I2C PWM Interrupt
D0/RX Touch 0 RX INT2
D1/TX 1 TX INT3

D2 Touch 2 SDA INT1
D3 Touch 3 SCL * INT0
D6 Touch 6 A7 *
D9 Touch 9 A9 *
D10 Touch 10 A10 *
D12 Touch 12 A11

Some of these pins are used for special applications. The table below shows the name of each category and its
usage:

Pin Category Usage

I2C Inter-Integrated Circuit (I2C), or Two-Wire Interface. Using this protocol, many I2C devices can be
connected on the same two wires. These pins are D2 and D3.

PWM
Pulse Width Modulation (PWM) is a technique used to gain analog results with digital means by
switching signals between HIGH and LOW, thousands of times a second. Using this, you can
simulate voltages between 0 and 5 volts.

Interrupt
An Interrupt makes the processor respond quickly to important events. When a certain signal
is detected, the Interrupt interrupts whatever the processor is doing, and executes some code.
Once that code has finished, the processor goes back to where it was originally.

20 21

Internal Pins:

Module V0.0 Pins V1.0 Pins
Bluetooth RX Socket D1 (TX) D1 (TX)
Bluetooth TX Socket D0 (RX) D0 (RX)

Left Button (A) A1 A2
Right Button (B) D4 D4

Buzzer D5 D5
Temperature Sensor A0 A0

Sound Sensor A4 A4
Light Sensor A5 A5
Built-in LED D13 D13
NeoPixels D17 D17

Touch Pads
D0, D2, D3, D6, D9, D10, D12 D0, D2, D3, D6, D9, D10, D12

Control Pin: D30 Control Pin: D30

LED Grid
Pin 1: SPI-MISO Pin 1: SPI-MOSI
Pin 2: SPI-MOSI Pin 2: A1
Pin 3: SPI-SCK Pin 3: SPI-SCK

Accelerometer

I2C-SDA (D2) SPI-MISO
I2C-SCL (D3) SPI-MOSI

SPI-SCK
Interrupt INT (D7) Interrupt INT (D7)

Chip Select CS (D8) Chip Select CS (D8)

Bluetooth/Wi-Fi Socket:

The pinout for the Bluetooth/Wi-Fi socket is shown in
the figure. The rest of the pins are not connected and
are used for the module stability when attached.

GND

TX

5V

RX
(3.3V)

Maker Version
At the time of writing this guide, Maker has gone
from version V0.0 to V1.0 with some improvements/
modifications. Based on the Maker version you have,
make sure you read this section. All changes are
summarised below.

Sound Sensor

Maker V0.0 has a special configuration in that, instead
of the value increasing when the sound sensor detects
noise, the value decreases. This has now changed in
Maker V1.0. When the sound sensor detects noise, the
value increases.

Accelerometer

If you are using the accelerometer sensor in Maker
V0.0, you should not touch or use touch pads 2 and
3 because they are sharing the same data lines (I2C).
You can still use the other touch pads. Also, the sensor
usually needs an offset to calibrate its values. The
sensor gives raw output which is not mapped to the
acceleration of gravity. The X axis points to the right
while the Y axis points to the top.

22 23

Maker V1.0 has a new accelerometer where its
communication lines are different from those on pin 3
and 4. The accelerometer is now using SPI pins. The
sensor is also calibrated which means that you do not
need to add an offset to the axis you want to read. The
output of the sensor is in the unit of g (acceleration of
gravity). The X axis points down while the Y axis points
to the right.

Pin 3 and Pin 12 Silkscreen

In Maker V0.0, pin 12 has an asterisk * next to it
indicating that it is a pulse width modulation (PWM)
pin while pin 3 does not. In Maker V1.0, this has been
fixed. Pin 3 has the asterisk while pin 12 does not.

Power Regulators

The power regulators on the V1.0 board are changed
to allow for a higher current value from the external
power supply.

Slight Changes in Wiring

Button A is now connected to pin A2 in V1.0 while it is
connected to pin A1 in V0.0.

The LED Grid wiring changed as explained in the Pin
Configuration table.

Power Options
There are several ways to power the Maker board such
as, the USB cable, power connector, or the Vin pin.
Choosing the power option depends on the application
and whether you need to run the Maker board in a
stationary place or within a movable machine.

USB Connector

The micro USB cable allows you to connect your
Maker to the computer, which powers the board and
allows you to send and receive data. The USB cable
looks like the following:

External Power Supply

The other power option is to use an external supply
between 5V to 9V. Based on which kit you get, you
may have a 9V battery holder. The battery holder
has an ON/OFF switch to make it easy to power the
Maker, without the need to connect and disconnect
the battery each time.

The Software

Arduino IDE
The Arduino Integrated Development Environment
(Arduino IDE) allows you to write and upload codes
to your Ibtikar Maker, using a text editor. This open
source interface contains a message area, a toolbar
with buttons to verify and upload your code and other
common functions like create and save files. You can
cut, copy, and paste your code.

24 25

Ardublockly
Ardublockly is a visual programming editor for Arduino.
This interface is based on Google’s Blockly. In visual
programming, you can use graphical elements to
create programs. You can also drag and drop program
elements, click, use menus, forms, dialogue boxes and
so on. Behind each block of your program, there are
tens or even hundreds of lines of code. This type of
programming helps new users to easily understand
programming.

Python
Python is a widely used, high-level programming
language for general-purpose programming, which
was first released in 1991. It has a design philosophy
which emphasises code readability, and a syntax (a set
of rules) which allows programmers to show concepts
in fewer lines of code, compared to other languages.

Python can be used to connect serially to your Maker
board which allows you to use all the capabilities
of Python installed on your computer, using a
Python library called PySerial. Unlike Arduino IDE
and Ardublockly which install the code, you write
to Maker directly; PySerial allows you to send and
receive data between your computer and the Maker.

To make this process easy, you can use the Ibtikar
Serial (IBSerial) library which uses the pySerial with
all the Maker functions and many Arduino commands
implemented in Python. This library is intended to
mirror the Maker Arduino functions and use them in
Python.

In this manual, we will only be focusing on the Arduino
programming environment with a brief introduction
to Python. If you are interested to know more about
using the visual interface Ardublockly, you can visit the
Maker portal which contains the Maker-Ardublockly
guide with other supporting activities and videos.

26 27

Creating Your First Program
Arduino Interface

Launch the Arduino IDE by double-clicking on the Arduino icon on the desktop and wait until the software starts.
You should see the following window:

Before you start programming your Maker for the first
time, you must set it up. You need the Maker board, a
USB cable, and a computer.

First, install the Arduino IDE from the Arduino official
website. Choose the one that suits your machine and
operating system. This software allows you to connect
with the Maker board, write a code using the Arduino
language, verify it, and then upload it to the Maker
board.

Note

If you have used Ardublockly, the visual
programming interface for Maker, then you
already have the Arduino IDE installed.

Connect the Maker board to the computer using the
USB cable. Insert one end of the USB cable into the
USB connecter and the other end into a USB socket on
your computer. The power LED will turn ON.

A message might pop up saying that the “Device driver
software was not successfully installed”. This means
that the Maker board and your computer cannot see
each other. For your computer to recognise the Maker
board, it needs a proper introduction which is known
as Driver. More details can be found in Appendix 1:
Arduino Driver Installation.

28 29

The IDE is split into five parts as shown:

1

3

5

2

4

These 5 sections are:

1. The file information section which has two titles:
the filename and the Arduino IDE version.

2. The menu bar which holds five drop down menus:
File, Edit, Sketch, Tools, and Help.

3. The toolbar consists of six buttons; five on the
left side and one on the far right. These buttons
give you easy access to the most frequently used
functions. These buttons are:

 � The Verify button, the first button to the left, is
used to check the code and make sure that it is
free of mistakes.

 � The Upload button, the second button to the
left, is responsible for uploading the code in the
sketch file to the connected Maker board.

 � The New button, the button in the middle, will
create a new blank sketch.

 � The Open button, the button with an arrow
pointed up, will allow the user to open a stored
sketch file.

 � The Save button, the button with an arrow
pointed down, will allow the user to save the
sketch file.

 � The Serial Monitor, the button on the far left,
used to open the monitor display. The monitor
will show all the serial data sent and received by
the serial interface.

4. The sketch window with a tab on top, holding the
sketch name. This is where you write your code.

5. The message window at the bottom of the program
which shows the status and error messages to the
user.

In the Arduino IDE window, you have two main
sections where you write your code: the void setup()
section and the void loop() section. The void setup()
part of the code is executed when the device is
initialised. It runs only once. It is used to declare the
output and input of the device and other commands.
The void loop() part of the code is executed after void
setup(). Once initialised, it runs in a loop forever and it
represents the actual job you need to do.

The Arduino files are called sketches, so the file name
will start with the word sketch and be followed by the
month and day. Arduino sketches are saved under the
‘.ino’ extensions.

Now that you have installed the Arduino IDE, you are
going to upload your first code.

30 31

Serial Monitor and Serial Plotter
Serial Monitor

The Arduino IDE has a tool that can be very useful in
debugging sketches or controlling Arduino using your
computer's keyboard. This tool is called the Serial
Monitor. It is a pop-up window that acts as a terminal
allowing you to receive and send Serial Data. Serial
Data is sent and received over two wires (Tx and Rx).

In the Maker board, the serial communication is
interfaced with the USB allowing you to send and
receive data directly using the USB. The Maker must
be connected by USB to your computer to be able
to use the Serial Monitor. The port which the Arduino
board is connected to must also be selected from the
same menu before you can use the tool.

When you click on the Serial Monitor icon or when
you open it from the Tools menu, the Serial Monitor
window will pop up. This tool has:

 � A small upper box. This is where you can type in
characters and then hit Enter or click Send.

 � A larger white area. This is where characters read
by the Arduino board will be displayed.

 � A pulldown that sets the line ending that will be
sent to Arduino when you hit Enter or click Send.
Based on your application, these options can be
useful when you want to send data with or without
a carriage return, for example.

 � Another pulldown menu sets the Baud Rate
for communications. It is important that this
value matches the value you set in your sketch.
Otherwise, characters will be unreadable. Some
sketches or other applications may use a different
Baud Rate.

Serial Plotter

Another useful tool is the Serial Plotter. This tool is
similar to the Serial Monitor but instead, it helps you
visualise the data on the screen.

Your First Program

Here is a simple example of how you can use the
Ibtikar Maker board and the IDE to do an action. This
will let you test the board to see if it works normally. In
this test, the built-in LED in the board will blink using a
ready-made example code from the Arduino IDE. The
built-in LED is called the L13 LED, as shown in the
figure.

32 33

Follow these steps:

 � Connect the board to your computer using the USB cable and your computer should recognise the board
automatically

 � Open the Arduino IDE

 � Once it is open, go to File > Examples > 01.Basics > Blink. The Blink example will open as shown.

 � Now, go to Tools and change the board to Arduino Leonardo and change the port whatever your board is
connected to. In our case it is COM13.

 � Click on Upload and wait a couple of seconds until the code is uploaded to your board. The message window
should show ‘Compiling sketch . . .’ and then it will change to ‘Uploading’. The RX and TX LEDs will start

34 35

blinking as they show that the sketch file is being transmitted from the IDE to the Maker board.

 � If you followed the steps correctly, you should see a message with ‘Done uploading’ and the RX and TX LEDs
will stop blinking.

 � The L13 LED will now start blinking once every second.

The previous test is a basic test, but if you see the LED
blinking, you are sure that your board is detected, and
the board name and port are selected correctly.

In the Arduino IDE, you can Create, Save and Open
codes using the Tools section or from the File menu.

Installing the Maker Library

To start using any Arduino-compatible board, you
have 2 options. You can either write the Arduino code
from scratch yourself that deals with hardware directly
or you can you use what is called a library. A library
contains a premade code that most of the time is
optimised and ready to be used.

Usually the second option makes it easy for you to
start with. In Arduino, there are built-in libraries which
you can use directly after installing the Arduino IDE. If
you want to use the additional libraries, you will need
to install them first. There are hundreds of additional
libraries available on the Internet for you to download
and test.

The Ibtikar Maker board has its own library which you
can install and use. The library has lots of examples
that walk you through the board features.

There are different ways of installing a library. You can
visit the Arduino website for more details. It is a great
website and you should always use it as a starting
point. In this guide, we will focus on one of the methods
mentioned there.

If the Arduino IDE was installed automatically on your
device after installing Ardublockly, then the Maker
library will already be installed. It is always good to
ensure you have the latest library installed. This usually
comes with lots of new useful functions and all bugs
solved.

Importing the .zip Library
Libraries are often distributed as a ZIP file or folder. The
name of the folder is the name of the library. For the
Maker, there is a ZIP file called ‘Ibtikar_Maker.zip’
which you can install from the Maker portal. The name
usually contains the version number.

You do not need to unzip the file, leave it as is.

36 37

In the Arduino IDE, navigate to Sketch > Include
Library > Add .ZIP Library. At the top of the drop-down
list, select the option to ‘Add .ZIP Library’ as shown
below.

Navigate to the file location, choose the ‘Ibtikar_
Maker.zip’ and click open. The library now will be

installed. You need to close the Arduino IDE and open
it again for the library to show.

Testing the Maker Library
To test that you have successfully installed the library,
you can go to the library examples and pick one. Read
the first few lines of the code to see what the code will
do. These lines are called the header of the code and
are very useful to helps us humans understand the
code.

In these examples, you only need to make sure which
version of the board you are using. Look at the bottom
left of the front side of your Maker. If you see V1.0 or
any other version number, then make sure you update
the code with this number. If you do not see any
number, then this means you are using V0.0.

Connect the Maker to your computer. Upload the
sketch to the board and wait a couple of seconds. You
should see the On-Board LED blink as the program is
uploaded to the Maker. After that you should see the
result of that code. Make sure the Maker response
matches what is written in the header.

Before You Start

Operator Symbol in
Arduino Description

= == If the values of two operands are equal, then the condition becomes true.
≠ != If the values of two operands are not equal, then condition becomes true.

< < If the value of left operand is less than the value of right operand, then the condition
becomes true.

≤ <= If the value of the left operand is less than or equal to the value of the right operand,
then the condition becomes true.

> > If the value of left operand is greater than the value of right operand, then the condition
becomes true.

≥ >= If the value of left operand is greater than or equal to the value of right operand, then
the condition becomes true.

If you are new to the programming field, make sure
you read this section before you start programming.
This will give you a general overview of things you will
need, to do the activities in this guide.

Logic and Conditional Statements
This category follows the Boolean Algebra system
which is a branch of Algebra where the value of the
variables has only two possible values; True or False.

Comparison Operators

The comparison operators compare the values on
either side of them and decide the relation between
them. They are also called relational operators. They
take two inputs and they return True based on how
these variables compare to each other.

38 39

Boolean Operators

1. The && (logical and) operator which returns True
when both of its inputs are True.

2. The || (logical or) operator which returns True
when both inputs or one of them is True.

3. The ! (logical not) operator which converts its input
into the opposite. If the input originally is True, it
will become False and vice versa.

Conditional Statements

Conditional statements perform different actions
based on their Boolean conditions. There are different
ways of doing this. One way is to use the if statement
which you can configure, based on your need.

The if statement by itself is the simplest form of the
conditional statements. If the condition is True, then
you do something. For example; you have a number
stored in a variable called x and you want to check
the value of this variable. If the value is greater than or
equal to zero, then you want to print the message ‘x is
greater than or equal to 0’.

The other form of the conditional if statements, is the
if - else form. This structure allows you to check the
condition, and if it is True or not. If it is True, then you
do something. Else you do another action.

For the same example, if the value of x is greater than
or equal to zero, then you want to print the message
‘x is greater than or equal to 0’. Else, then print the
message ‘x is less than 0’.

The third form of the conditional if statements, is the if
- else if - else form. This structure allows you to check
multiple conditions and do different actions.

For the same example, if the value of x is greater than
zero, then print ‘x is greater than 0’. But if the value
of x is less than zero, then print ‘x is less than 0’. Else,
print ‘x equals zero’ since it is the last case you may
encounter.

For each if statement, you must start with the if and
you can add as much as you want from the else if and
at most, one else at the end.

Loops
Sometimes it is important to repeat a program without
stopping. One way is to repeat the commands you
need, but this does not make sense if your program
is long or if you want the program to run without
stopping. Luckily, there are loop statements which
allow you to repeat your program or a part of it for a
certain number of times, until a condition is met or to
loop for ever.

40 41

Maker Activities Activity 1: LED ON
In this activity, the on-board LED will be ON forever.
Forever means until you unplug the Maker, or the
battery dies. You will first need to include the Maker
library and initialise it in the setup function. Choose
the board version which corresponds to the board you
have.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.ledbuiltin(HIGH);
}

Upload the program to your Maker board. The LED will
be ON.

Activity 2: LED Blink
In this activity, the on-board LED will blink each
second. You will need two LED commands and two
wait commands. Arrange the commands as shown and
upload the program. The LED will blink each second.
This program is very similar to the Blink example you
used to test the board.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.ledbuiltin(HIGH);
 delay(1000);
 IBMaker.ledbuiltin(LOW);
 delay(1000);
}

IBMaker.ledbuiltin(HIGH);

And to turn it OFF, use:

IBMaker.ledbuiltin(LOW);

This LED has its own command in the Maker library. It can be controlled to be ON or OFF.

To turn the LED ON use the following command:

On-Board LED

42 43

Note

The second parameter in the setRow and
setColumn commands is an 8-bit binary number.
Since the Maker has a grid of 5X5, only the 5 most
significant bit are important. The last three have
no effect on the Maker grid. For example, to turn
ON a complete row on the grid, the binary number
should be 0b11111000.

In the following activity, you will create a program to
blink each LED individually using two for-loops, one
for the rows and one for the columns.

Since you need to go through rows and columns at
the same time, then you need two different variables,
one for the rows and one for the columns. You can
create a new variable by typing the type of the variable
followed by the name of that variable.

Now, write the code as shown. Since the LED grid is
5 by 5 and the indexing starts from 0, then each loop
should count from 0 to 4.

#include <Ibtikar_IBMaker.h>
int i;
int j;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 for (i = 0; i <= 4; i++) {
 for (j = 0; j <= 4; j++) {
 IBMaker.setLed(i, j, HIGH);
 delay(100);
 IBMaker.setLed(i, j, LOW);
 delay(100);
 }
 }
}

If you swapped the inner and outer loops, then the
LEDs pattern will be a vertical one instead of horizontal.

LED Grid

Activity 3: Draw Shapes
You can draw shapes on the Maker using different
methods. For example, you can use:

 � The setLed command to turn ON or OFF an
individual LED by specifying the row and column
of the LED followed by the state (HIGH or LOW).

IBMaker.setLed(row, column, state)

 � The setRow command to control the LEDs in a
specific row at once.

IBMaker.setRow(row_number, 0bxxxxxxxx)

 � The setColumn command to control the LEDs in a
specific column at once.

IBMaker.setColumn(column_number, 0bxxxxxxxx)

Maker can control the 25 LEDs at once or each one individually. In the Maker library, there are many commands
available. Some of these commands allow you to display numbers, characters, scroll strings, or even draw shapes.

44 45

Activity 4: Display a Number
To display numbers on the Maker, you need the
following command:

IBMaker.Leds_Num(0, duration);

This command accepts integer numbers (numbers
without a fraction). It also accepts variables, so you can
display a counter for example. In the first parameter,
you specify the number you want to show. In the
second parameter, you specify the scrolling step
duration.

The following program will display numbers from 1 to
15 with a 100-millisecond scrolling duration.

#include <Ibtikar_IBMaker.h>
int i;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 for (i = 1; i <= 15; i++) {
 IBMaker.Leds_Num(i, 100);
 }
}

Activity 5: Display a Character
To display a single character (either a letter, number
or a symbol) on the Maker, you need the following
command:

IBMaker.Leds_Char('', duration);

This command accepts a single character in its first
parameter. In the second parameter, you specify the
display duration.

This means that the character you want, will be
displayed at once without scrolling for the duration
you specify.

To see the difference, try the following program.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.Leds_Char('?', 1000);
 IBMaker.Leds_Char('4', 1000);
}

Once you upload it to the Maker, you will see the
question mark symbol for 1 second then number 4 for
another second. This will repeat forever.

Activity 6: Scroll a String
If you want to scroll a text, your name for example, you
will need a different command called Leds_Str.

IBMaker.Leds_Str("", duration);

Note the difference between the single quotation in
the Leds_Char command and the double quotation
in the Leds_Str command. In the second parameter,
you specify the scrolling step duration.

In the following example, we will scroll “Hello Maker”
with a duration of 200ms for each scrolling step.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.Leds_Str("Hello Maker", 200);
}

Upload the program to your Maker and check the
result. Now change the code to make it scroll your
name.

Activity 7: Move and Turn an LED
Since the 25 LEDs form a grid, you can consider them
as a coordinate system. This means that you can
create an origin, move an LED in a certain direction
and turn clockwise or counter clockwise. This makes it
easy to create complex patterns in a shorter code.

IBMaker.Create_Center(x, y)
IBMaker.Move(steps)
IBMaker.Turn(CW)
IBMaker.Turn(CCW)

46 47

In this activity, you will create the following pattern with one LED being ON at a time.

You can think of this as a pattern that repeats itself 4 times, as shown.

Loop 1 Loop 2 Loop 3 Loop 4

The origin should start from the point (0,1). Then the
LED will move two steps, turn clockwise, move one
step, turn counter clockwise and finally move one step.
If the same pattern is repeated 4 times, you will end
up with the required pattern. Since this process is very
fast, a time delay is needed in each part. Your program
should look like this.

Notice that to create the origin once, you place its
command in the setup part.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
 IBMaker.Create_Center(0, 1);}
void loop() {
 for (int count = 0; count < 4; count++){
 IBMaker.Move(2);
 IBMaker.Turn(CW);
 delay(250);
 IBMaker.Move(1);
 IBMaker.Turn(CCW);
 delay(250);
 IBMaker.Move(1);
 IBMaker.Turn(CW);
 delay(250);
}}

Activity 8: LEDs Brightness
The last two commands that control the LED grid are
the LEDBrightness and clearDisplay. The brightness
command allows you to change the brightness of the
25 LEDs at once. You can change the brightness level
from 1 to 15. The clear command turns OFF all LEDs at
once. This is useful if you made a pattern and then you
want to turn the grid OFF without the need for turning
OFF each LED individually.

IBMaker.clearDisplay(0x00)
IBMaker.LEDBrightness(level)

In this activity, you will increase the brightness from 1
to 15 in steps one at a time. Inside the for-loop, you will
add the brightness command, turn all LEDs ON and
wait for 100ms. Once the loop is finished, you will clear
all the LEDs at once and wait for half a second. Your
program should look like the following.

48 49

#include <Ibtikar_IBMaker.h>
int i;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 for (i = 1; i <= 15; i++) {
 IBMaker.LEDBrightness(i);
 IBMaker.setRow(0, 0b11111000);
 IBMaker.setRow(1, 0b11111000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b11111000);
 IBMaker.setRow(4, 0b11111000);
 delay(100);
 }
 IBMaker.clearDisplay(0x00);
 delay(500);
}

Read the Buttons

The Maker has two buttons that you can read. These
buttons are button A on the left side of the board and
button B on the right side. In the Maker library, there
are three commands that you can use, two of them
check if the button is pressed or not while the third
command returns the number of clicks you clicked on
a button.

IBMaker.ButtonL()
IBMaker.ButtonR()

For the third command, you need to choose which
button you want to read and the maximum number of
clicks you want to reach. For example, if the value is 2,
this means the command returns 0 if it is not clicked,
1 if it is clicked once and 2 if it is clicked twice. If you
clicked three times, this will not be detected, and the
maximum will be 2.

The following command will check the left button for
the number of clicks you click:

IBMaker.ButtonCount(IBPIN_LEFT, count)

While this command will the check the right button for
the same:

IBMaker.ButtonCount(IBPIN_RIGHT, count)

Note:

To avoid hurting your eyes do not look directly at
the LED grid when the brightness is high.

50 51

Activity 9: Read Both Buttons
In this activity, you will read both buttons and display
a character on the LED grid. If the left button (or button
A) is pressed, then ‘A’ will be displayed on the grid.
Similarly, if the right button (or button B) is pressed, ‘B’
will be displayed on the grid. Try the following program
and upload it to your Maker. Now, click on each button
and notice the letter displayed on the LED grid.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 if (IBMaker.ButtonL()) {
 IBMaker.Leds_Char('A', 200);}
 if (IBMaker.ButtonR()) {
 IBMaker.Leds_Char('B', 200);}
}

Activity 10: Detect Multiple Clicks
In this activity, you will read how many times button
A is pressed and you will display a happy face if you
reach the maximum number of clicks. If you do not
reach the maximum value, a sad face will be displayed.

Since the Button Count command will return different
values based on how many times you press the
button, then it is better to read the command and store
its value in a variable. Then based on the value stored,
you can make decisions.

Try the following program and upload it to your Maker
and see the maximum number of clicks you reached.

#include <Ibtikar_IBMaker.h>
int item;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 item = IBMaker.ButtonCount(IBPIN_LEFT, 5);
 if (item == 5) {
 IBMaker.setRow(0, 0b00000000);
 IBMaker.setRow(1, 0b01010000);
 IBMaker.setRow(2, 0b00000000);
 IBMaker.setRow(3, 0b10001000);
 IBMaker.setRow(4, 0b01110000);
 } else {
 IBMaker.setRow(0, 0b00000000);
 IBMaker.setRow(1, 0b01010000);
 IBMaker.setRow(2, 0b00000000);
 IBMaker.setRow(3, 0b01110000);
 IBMaker.setRow(4, 0b10001000);}}

Activity 11: Detect Multiple Clicks
(Optimised)
You may have noticed that even when you do not
click button A at all, the sad face is still there. You can
improve the code by adding another case to check
when the number of counts is zero. It is good to add
wait commands when you display the happy and sad
faces. Try the following program.

#include <Ibtikar_IBMaker.h>
int item;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 item = IBMaker.ButtonCount(IBPIN_LEFT, 5);
 if (item == 5) {
 IBMaker.setRow(0, 0b00000000);
 IBMaker.setRow(1, 0b01010000);
 IBMaker.setRow(2, 0b00000000);
 IBMaker.setRow(3, 0b10001000);
 IBMaker.setRow(4, 0b01110000);
 delay(500);
 } else if (item == 0) {
 IBMaker.clearDisplay(0x00);
 } else {
 IBMaker.setRow(0, 0b00000000);
 IBMaker.setRow(1, 0b01010000);
 IBMaker.setRow(2, 0b00000000);
 IBMaker.setRow(3, 0b01110000);
 IBMaker.setRow(4, 0b10001000);
 delay(500);
 }
}

52 53

Read the Temperature Activity 12: Display the Temperature
In this activity, you will scroll the temperature in both the Celsius and Fahrenheit units on the LED grid. Try the
following program and upload it to your Maker.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.Leds_Num(IBMaker.temperatureC(), 200);
 IBMaker.Leds_Str("C ", 200);
 IBMaker.Leds_Num(IBMaker.temperatureF(), 200);
 IBMaker.Leds_Str("F ", 200);
}

The temperature sensor on the Maker can be used
to measure the board temperature. The temperature
command in the Maker library allows you to read the
temperature in either the Celsius or Fahrenheit unit.

IBMaker.temperatureC()
IBMaker.temperatureF()

54 55

BuzzerRead Ambient Light

The light sensor on the Maker measures the ambient
light. It returns a value between 0 to 1023 representing
the light intensity level. Higher values mean the
measured light level is high (there is light). You can find
its command in the Maker library.

IBMaker.Sensor_Light()

Activity 13: Display the Ambient Light Value
In this activity, you will scroll the ambient light value
on the LED grid. While you are testing, you can use
a torch and direct it toward the sensor to notice the
change. Try the following program and upload it to
your Maker.

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.Leds_Num(IBMaker.Sensor_Light(), 200);
}

The magnetic buzzer generates tones by controlling
the frequency and duration of the note needed. The
buzzer has one command in the Maker library. This
command by itself is a complete program.

IBMaker.playTone(100, 250)

The first parameter is the frequency in Hertz (Hz) while
the second parameter is the duration in millisecond
(ms).

Activity 14: Play Different Tones
Using 3 playTone commands, generate tones with
different frequencies and fixed duration. Then fix
the frequency and change the duration. Add a wait
command after each note to have time to listen to it.
In each case, upload the program to your Maker board
and note the difference.

56 57

Activity 15: Loop Tone Frequency
The playTone command accepts parameters as
integer numbers or variables. In this activity, you will
change the frequency from 100 to 2000 Hz with
steps of 50 Hz, using a for loop. The duration will be
fixed at 250 milliseconds. The frequency for loop and
the tone commands will be played once in the code, so
they are moved to the setup part. Your program should
look like this.

#include <Ibtikar_IBMaker.h>
int i;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
 for (i = 100; i <= 2000; i += 50) {
 IBMaker.playTone(i, 250);
 }
}
void loop() {
}

Your programs should look like these.

Program 1:

Variable frequency

Fixed Duration

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
 IBMaker.playTone(300, 250);
 delay(500);
 IBMaker.playTone(400, 250);
 delay(500);
 IBMaker.playTone(500, 250);
 delay(500);
}
void loop() {
}

Program 2:

Fixed frequency

Variable Duration

#include <Ibtikar_IBMaker.h>
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
 IBMaker.playTone(300, 250);
 delay(500);
 IBMaker.playTone(300, 500);
 delay(500);
 IBMaker.playTone(300, 750);
 delay(500);
}
void loop() {
}

Can you tell the difference?

If you tried to upload these programs, but you decided to put the commands in the loop and the setup part, you
will notice that it is not easy to identify between them. It may also be annoying to listen to them because they
repeat forever. Therefore, the setup part is useful when you want to initialise variables or set properties of some
components, like brightness for example.

Try the program, upload it to your Maker and enjoy the
music you have just made.

Note

To avoid damaging the buzzer, do not use higher
frequency values (more than 2000Hz).

58 59

Read the Sound Level Activity 16: React to Sound
In this activity, you will detect the change in the sound
level and play a tone. The tone frequency will depend
on the sound level detected. You can pass the value of
the detected sound directly to the playTone command.

You can even do more. You can cover a wider range of
frequencies by mapping the sound range (0-400) to a
frequency range (0-2000) Hz.

The sound sensor on the Maker measures the sound
intensity level. The sound sensor has one command
in the Maker library. Even though it returns a value
between 0 to 1023, the highest value it may reach, if
you clap your hand for example, is around 400.

IBMaker.Sensor_Sound()

Note

Maker V0.0 has a special configuration in that,
instead of the value increasing when the sound
sensor detects noise, the value decreases. This
should be considered when you create your code
as explained in the next activity.

To avoid hearing noise when the frequency is low, you
can put the playTone command inside an if statement
so that you can hear a tone only when the value
exceeds a threshold, say 100.

Try the following program, upload it to your Maker and
clap your hand near the sound sensor. Did you hear
anything? Now put your mouth close and blow air on
the sensor. Did you hear different notes?

#include <Ibtikar_IBMaker.h>
int item;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}

void loop() {
 // Use this for "V0.00"
 item = (map(IBMaker.Sensor_Sound(), 400, 0, 0, 2000));

 // Use this for "V1.00"
 // item = (map(IBMaker.Sensor_Sound(), 0, 400, 0, 2000));

 if (item > 350) {
 IBMaker.playTone(item, 200);
 delay(10);
 }
 delay(1);
}

60 61

These 8 pin pads can be interfaced with extra input and output modules allowing you to extend the capabilities of
your Maker board. On top of that, 7 of them, can be used as touch sensors. So, you can touch them for a responding
action.

Pin Touch Digital Analog Serial I2C PWM Interrupt

D0/RX * 0 RX INT2

D1/TX 1 TX INT3

D2 * 2 SDA INT1

D3 * 3 SCL * INT0

D6 * 6 A7 *

D9 * 9 A9 *

D10 * 10 A10 *

D12 * 12 A11

Activity 17: Detect Touch
In this activity, you will program the Maker to show an arrow, based on which touch pad you pressed. For example,
if you touched pin 9 or pin 10, you should see an arrow toward these pins, as shown.

Each pin gives a value based on the capacitance. You will pick a threshold, say 200 and make the decisions based
on that. Since the threshold will be the same for all touch pads, then you can use a variable and assign the value of
say 200 to it. This will make it easier if you want to change the value later.

Pin Pads

62 63

Try the following program and upload it to your Maker.

#include <Ibtikar_IBMaker.h>
int item;

void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}

void loop() {
 item = 200;
 if (IBMaker.Touch(0) > item) {
 IBMaker.setRow(0, 0b00001000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b10100000);
 IBMaker.setRow(3, 0b11000000);
 IBMaker.setRow(4, 0b11100000); }
 if (IBMaker.Touch(2) > item || IBMaker.Touch(3) > item) {
 IBMaker.setRow(0, 0b11100000);
 IBMaker.setRow(1, 0b11000000);
 IBMaker.setRow(2, 0b10100000);
 IBMaker.setRow(3, 0b00010000);
 IBMaker.setRow(4, 0b00001000); }
 if (IBMaker.Touch(6) > item || IBMaker.Touch(12) > item) {
 IBMaker.setRow(0, 0b10000000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b00101000);
 IBMaker.setRow(3, 0b00011000);
 IBMaker.setRow(4, 0b00111000); }
 if (IBMaker.Touch(9) > item || IBMaker.Touch(10) > item) {
 IBMaker.setRow(0, 0b00111000);

 IBMaker.setRow(1, 0b00011000);
 IBMaker.setRow(2, 0b00101000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b10000000); }
}

Note

Do not forget, pin 1 is not a touch pad.

Activity 18: Piano
In this activity, you will program the Maker to play a
tone based on which touch pad you pressed. Try the
following program and upload it to your Maker.

#include <Ibtikar_IBMaker.h>

int item;

void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}

void loop() {
 item = 100;

 if (IBMaker.Touch(0) > item) {
 IBMaker.playTone(400, 250);
 }
 if (IBMaker.Touch(2) > item) {
 IBMaker.playTone(450, 250);
 }
 if (IBMaker.Touch(3) > item) {
 IBMaker.playTone(500, 250);
 }
 if (IBMaker.Touch(10) > item) {
 IBMaker.playTone(550, 250);
 }
 if (IBMaker.Touch(9) > item) {
 IBMaker.playTone(600, 250);
 }
 if (IBMaker.Touch(6) > item) {
 IBMaker.playTone(650, 250);
 }
 if (IBMaker.Touch(12) > item) {
 IBMaker.playTone(700, 250);
 }
}

64 65

NeoPixels Activity 19: Colour Wheel
In this activity, you will give each NeoPixel a different colour. Since there are 10 NeoPixels then you will need 10
lines of code. Try the following program and upload it to your Maker.

#include <Ibtikar_IBMaker.h>

void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}

void loop() {
 IBMaker.setPixelColor(0, IBMaker.colorWheel(255, 255, 255));
 IBMaker.setPixelColor(1, IBMaker.colorWheel(255, 0, 0));
 IBMaker.setPixelColor(2, IBMaker.colorWheel(160, 200, 0));
 IBMaker.setPixelColor(3, IBMaker.colorWheel(255, 255, 0));
 IBMaker.setPixelColor(4, IBMaker.colorWheel(0, 255, 255));
 IBMaker.setPixelColor(5, IBMaker.colorWheel(255, 0, 255));
 IBMaker.setPixelColor(6, IBMaker.colorWheel(0, 255, 0));
 IBMaker.setPixelColor(7, IBMaker.colorWheel(128, 0, 128));
 IBMaker.setPixelColor(8, IBMaker.colorWheel(0, 128, 128));
 IBMaker.setPixelColor(9, IBMaker.colorWheel(0, 0, 128));
}

Did you see all the NeoPixels coloured?

The Maker has 10 RGB LEDs. Unlike the 25 LEDs
which cannot change their colour, the RGB LEDs can
be programmed to show any colour by combining the
three different colours. Think of each pixel as three
small LEDs combined, and each LED has a different
colour (Red, Green and Blue).

Like the LED grid commands, you can set the
brightness of all NeoPixels using the NeoBrightness
command and turn them all OFF using the clear
Pixels command. The other command allows you to
choose one of the NeoPixels and choose its colour, by
specifying the RGB values.

Each NeoPixel has a number written next to it. This will
help you identify which one you want to control.

The NeoPixels have the following commands in the
Maker library:
IBMaker.clearPixels()
IBMaker.NeoBrightness(level)
IBMaker.setPixelColor(number, IBMaker.colorWheel(R,G,B))

66 67

Activity 20: Fading Sequence
In this activity, you will change the brightness of the
NeoPixels using a for-loop. The following program
starts by turning OFF all NeoPixels, then goes to the
brightness for-loop. The brightness can be changed
from 0 to 255. For each NeoPixel, you can choose
whatever colour you prefer.

Activity 21: Looping LEDs
Sometimes it is easier to loop the NeoPixels number instead of adding 10 lines of code. This will help in making your
program compact and easier to understand.

In this activity, you will set the 10 NeoPixels to a specific colour using 1 NeoPixel command and a for-loop. Try the
following program and upload it to your Maker.

#include <Ibtikar_IBMaker.h>
int LED;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.clearPixels();
 for (LED = 0; LED <= 9; LED++) {
 IBMaker.setPixelColor(LED, IBMaker.colorWheel(189, 71, 71));
 delay(250);
 }
}

Activity 22: Looping Colours and LEDs
What if you want to change the RGB values?

In this case, you can add a separate for-loop for each value. In the following program, you will change the value of
the 10 NeoPixels at once. The three RGB loops will start from 0 to 255 with a step of 50. Each time the blue-colour
loop finishes, the green-colour loop will change the value of G with a step of 50. And each time the green-colour
loop finishes, the red-colour loop will change the value of R with a step of 50.

A 10ms delay between each brightness update is
added. Once the loop is finished, the program will wait
half a second before starting from the beginning.

Try the following program and upload it to your Maker.

#include <Ibtikar_IBMaker.h>
int i;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.clearPixels();
 for (i = 0; i <= 255; i++) {
 IBMaker.NeoBrightness(i);
 IBMaker.setPixelColor(0, IBMaker.colorWheel(255, 0, 0));
 IBMaker.setPixelColor(1, IBMaker.colorWheel(255, 127, 0));
 IBMaker.setPixelColor(2, IBMaker.colorWheel(255, 255, 0));
 IBMaker.setPixelColor(3, IBMaker.colorWheel(127, 255, 0));
 IBMaker.setPixelColor(4, IBMaker.colorWheel(0, 255, 0));
 IBMaker.setPixelColor(5, IBMaker.colorWheel(0, 0, 255));
 IBMaker.setPixelColor(6, IBMaker.colorWheel(0, 255, 255));
 IBMaker.setPixelColor(7, IBMaker.colorWheel(255, 0, 255));
 IBMaker.setPixelColor(8, IBMaker.colorWheel(75, 0, 130));
 IBMaker.setPixelColor(9, IBMaker.colorWheel(255, 255, 255));
 delay(10);}
 delay(500);}

68 69

Triple Axis AccelerometerTry the following program and upload it to your Maker.

#include <Ibtikar_IBMaker.h>
int R;
int G;
int B;
int LED;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}
void loop() {
 IBMaker.clearPixels();
 for (R = 0; R <= 255; R += 50) {
 for (G = 0; G <= 255; G += 50) {
 for (B = 0; B <= 255; B += 50) {
 for (LED = 0; LED <= 9; LED++) {
 IBMaker.setPixelColor(LED, IBMaker.colorWheel(R, G, B));
 }
 delay(100);
 }
 }
 }
}

You can reduce the step in each colour loop, but this will make your program take a longer time to loop over all the
colours.

For each NeoPixel, how many colour combinations do you think exit?

Accelerometers are used to measure acceleration,
which is how fast something is speeding up or down.
An accelerometer can measure static acceleration like
gravity, which is useful in detecting tilt, like when your
phone tilts. This sensor is in the middle of the board.

The accelerometer has many commands in the Maker
library. The first one is used to enable or disable
the sensor by passing the parameter true or false
respectively.

IBMaker.Enable_ADXL(true);

Or

IBMaker.Enable_ADXL(false);

To read the acceleration value in each of the three axes
(X, Y or Z), use these commands based on which axis
you want.

IBMaker.motionX()
IBMaker.motionY()
IBMaker.motionZ()

70 71

The value of the accelerometer could be a positive
number, a negative number or a zero. When the value
of the acceleration in the X-axis is zero for example,
this means the Maker is not tilted in that direction.

Sometimes, you may get a small positive or negative
value even if the Maker is not tilted. To avoid this, you
will need to measure this offset and compensate for
it. A simple, yet effective method of finding the offset
is to add or subtract a number from the measurement
and check if this solves the issue. You can keep tuning
the offset until you cancel its effect.

Another important topic is the sensitivity of the sensor.
What if you want the board to detect the tilt after a
certain value. This means when you tilt the board, you
can create a threshold value, so if you exceed it, you
are sure that the Maker is tilted as shown.

- +0 +Thr-Thr

Tilt in positive
direction

No tiltTilt in negative
direction

Note

Based on which version of the Maker you have,
pay attention to the following:

If you are using the accelerometer sensor in
Maker V0.0, you should not touch or use touch
pads 2 and 3 because they are sharing the same
data lines. If you touched them accidentally, the
Maker will stop working and you will need to
reset it using the Reset button on the back side.
You can still use the other touch pads. Also,
the sensor usually needs an offset to calibrate
its values. The sensor gives raw output which
is not mapped to the acceleration of gravity.
Maker V1.0 has a new accelerometer where its
communication lines are different from those on
pin 3 and 4. This accelerometer is also calibrated
which means that you do not need to add an
offset to the axis you want to read. The output of
the sensor is in the unit of m/s2.

Activity 23: Single Axis Tilt Detection
In this activity, you will create a program to detect
the tilt in the direction of one axis. You will show the
direction as an arrow (East or West) using the LED
grid.

You first need to enable the accelerometer sensor, then
define a threshold variable and set it to a certain value.
Since the accelerometer returns float values, you need
to define the variable as float as well.

In the main loop, read the sensor in the required
direction. If there is an offset, you will need to
compensate for it. Once the value is read and the
offset is compensated for, you need to compare the
measured value with the threshold value. If the value
is greater than the positive threshold value, draw the
arrow which corresponds to that direction. If it is smaller
than the negative threshold value, draw the arrow
which corresponds to the other direction. Otherwise,
clear the LED grid to indicate that there is no tilt.

For Maker V0.0, the offset in the x axis is found to be
around 34. The value may differ for your board. The
chosen threshold is 25..

72 73

#include <Ibtikar_IBMaker.h>
float threshold;
float x;
void setup() {
 IBMaker.begin("V0.00");
 IBMaker.Enable_ADXL(true);
 threshold = 25.0;
}
void loop() {
 x = IBMaker.motionX() + 33.5;
 if (x > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b00010000);
 IBMaker.setRow(4, 0b00100000);
 } else if (x < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b00100000);
 } else {
 IBMaker.clearDisplay(0x00);
 }
 delay(100);
}

For Maker V1.0, there is no need to compensate for
the offset. The chosen threshold is 1. Based on the
accelerometer used in this version, the X and Y axes
direction is different from those in V0.0. This means to
do the same activity as in V0.0, you need to read the
value of the Y axis.

#include <Ibtikar_IBMaker.h>
float threshold;
float y;
void setup() {
 IBMaker.begin("V1.00");
 IBMaker.Enable_ADXL(true);
 threshold = 1.0;
}
void loop() {
 y = IBMaker.motionY();
 if (y > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b00010000);
 IBMaker.setRow(4, 0b00100000);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b00100000);
 } else {

 IBMaker.clearDisplay(0x00);
 }
 delay(100);
}

Activity 24: Multiple Axis Tilt Detection (4
Directions)
In this activity, you will create a program to detect the
tilt in the X and Y axes. You will show the direction
as an arrow (North, East, South or West) using the
LED grid. Like the previous activity, you will create a
threshold value so if you exceed it, you are sure that
the Maker is tilted. This threshold will be the same for
both directions.

For Maker V0.0, the offset in the x axis is found to be
around 34 and the offset in the y axis is found to be 85.
These values may differ for your board. The chosen
threshold is 25.

#include <Ibtikar_IBMaker.h>
float threshold;
float x;
float y;
void setup() {
 IBMaker.begin("V0.00");
 IBMaker.Enable_ADXL(true);

 threshold = 25.0;
}
void loop() {
 x = IBMaker.motionX() + 33.5;
 y = IBMaker.motionY() + 85;

 if (x > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b00010000);
 IBMaker.setRow(4, 0b00100000);
 delay(100);
 } else if (x < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b00100000);
 delay(100);
 } else {
 IBMaker.clearDisplay(0x00);
 }
 if (y > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00100000);
 IBMaker.setRow(2, 0b10101000);
 IBMaker.setRow(3, 0b01110000);
 IBMaker.setRow(4, 0b00100000);
 delay(100);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01110000);

74 75

 IBMaker.setRow(2, 0b10101000);
 IBMaker.setRow(3, 0b00100000);
 IBMaker.setRow(4, 0b00100000);
 delay(100);
 } else {
 IBMaker.clearDisplay(0x00);
 }
}

For Maker V1.0, there is no need to compensate for the
offset. And like before, the chosen threshold is 1.

#include <Ibtikar_IBMaker.h>
float threshold;
float x;
float y;
void setup() {
 IBMaker.begin("V1.00");
 IBMaker.Enable_ADXL(true);
 threshold = 1;
}
void loop() {
 x = IBMaker.motionX();
 y = IBMaker.motionY();
 if (x > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01110000);
 IBMaker.setRow(2, 0b10101000);
 IBMaker.setRow(3, 0b00100000);
 IBMaker.setRow(4, 0b00100000);

 delay(100);
 } else if (x < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00100000);
 IBMaker.setRow(2, 0b10101000);
 IBMaker.setRow(3, 0b01110000);
 IBMaker.setRow(4, 0b00100000);
 delay(100);
 } else {
 IBMaker.clearDisplay(0x00);
 }
 if (y > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b00010000);
 IBMaker.setRow(4, 0b00100000);
 delay(100);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b00100000);
 delay(100);
 } else {
 IBMaker.clearDisplay(0x00);
 }
}

Activity 25: Multiple Axis Tilt Detection (8
Directions)
In this activity, you will create a program to detect the
tilt in the X and Y axes. You will show the direction as
an arrow (North, North-East, East, South-East, South,
South-West, West or North-West) using the LED grid.

North

South

South-West

West

North-West North-East

South-East

East

Like the previous activity, you will create a threshold
value so if you exceed it, you are sure that the Maker
is tilted. This threshold will be the same for both

directions. For each direction, there is a different
condition you need to check. These conditions depend
on the value read from both X and Y axes.

For Maker V0.0, the threshold and the offset values
in the x axis and y axis are like before. The conditions
are shown below based on the Accelerometer X and Y
axes.

Y<-THR

Y>+THR

X<-THR

X>+THR
&

Y<-THR

X<-THR
&

Y<-THR

X<-THR
&

Y>+THR

X>+THR
&

Y>+THR

X>+THR

Your code will look like the following.

76 77

#include <Ibtikar_IBMaker.h>
float threshold;
float x;
float y;
void setup() {
 IBMaker.begin("V0.00");
 IBMaker.Enable_ADXL(true);
 threshold = 25.0;
}
void loop() {
 IBMaker.clearDisplay(0x00);
 x = IBMaker.motionX() + 33.5;
 y = IBMaker.motionY() + 85;
 if (x > threshold) {
 if (y > threshold) {
 IBMaker.setRow(0, 0b10000000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b00101000);
 IBMaker.setRow(3, 0b00011000);
 IBMaker.setRow(4, 0b00111000);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b00111000);
 IBMaker.setRow(1, 0b00011000);
 IBMaker.setRow(2, 0b00101000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b10000000);
 } else {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b00010000);

 IBMaker.setRow(4, 0b00100000);
 }
 } else if (x < -1 * threshold) {
 if (y > threshold) {
 IBMaker.setRow(0, 0b00001000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b10100000);
 IBMaker.setRow(3, 0b11000000);
 IBMaker.setRow(4, 0b11100000);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b11100000);
 IBMaker.setRow(1, 0b11000000);
 IBMaker.setRow(2, 0b10100000);
 IBMaker.setRow(3, 0b00010000);
 IBMaker.setRow(4, 0b00001000);
 } else {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b00100000);
 }
 } else {
 if (y > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00100000);
 IBMaker.setRow(2, 0b10101000);
 IBMaker.setRow(3, 0b01110000);
 IBMaker.setRow(4, 0b00100000);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01110000);
 IBMaker.setRow(2, 0b10101000);

 IBMaker.setRow(3, 0b00100000);
 IBMaker.setRow(4, 0b00100000);
 } else {
 IBMaker.clearDisplay(0x00);
 }
 }
 delay(100);
}

For Maker V1.0, the conditions are shown below based
on the Accelerometer X and Y axes which are different
to the Maker V0.0 axes.

X>+THR

X<-THR

Y<-THR

X>+THR
&

Y>+THR

X>+THR
&

Y<-THR

X<-THR
&

Y<-THR

X<-THR
&

Y>+THR

Y>+THR

Your code will look like the following.

#include <Ibtikar_IBMaker.h>

float threshold;
float x;
float y;

void setup() {
 IBMaker.begin("V1.00");
 IBMaker.Enable_ADXL(true);
 threshold = 1.0;
}

void loop() {
 IBMaker.clearDisplay(0x00);
 x = IBMaker.motionX();
 y = IBMaker.motionY();
 if (x > threshold) {
 if (y > threshold) {
 IBMaker.setRow(0, 0b00111000);
 IBMaker.setRow(1, 0b00011000);
 IBMaker.setRow(2, 0b00101000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b10000000);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b11100000);
 IBMaker.setRow(1, 0b11000000);
 IBMaker.setRow(2, 0b10100000);
 IBMaker.setRow(3, 0b00010000);
 IBMaker.setRow(4, 0b00001000);

78 79

Advanced Activities
Creating Your Own Functions

 } else {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01110000);
 IBMaker.setRow(2, 0b10101000);
 IBMaker.setRow(3, 0b00100000);
 IBMaker.setRow(4, 0b00100000);
 }
 } else if (x < -1 * threshold) {
 if (y > threshold) {
 IBMaker.setRow(0, 0b10000000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b00101000);
 IBMaker.setRow(3, 0b00011000);
 IBMaker.setRow(4, 0b00111000);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b00001000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b10100000);
 IBMaker.setRow(3, 0b11000000);
 IBMaker.setRow(4, 0b11100000);
 } else {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00100000);
 IBMaker.setRow(2, 0b10101000);
 IBMaker.setRow(3, 0b01110000);
 IBMaker.setRow(4, 0b00100000);
 }
 } else {
 if (y > threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b00010000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b00010000);

 IBMaker.setRow(4, 0b00100000);
 } else if (y < -1 * threshold) {
 IBMaker.setRow(0, 0b00100000);
 IBMaker.setRow(1, 0b01000000);
 IBMaker.setRow(2, 0b11111000);
 IBMaker.setRow(3, 0b01000000);
 IBMaker.setRow(4, 0b00100000);
 } else {
 IBMaker.clearDisplay(0x00);
 }
 }
 delay(100);
}

You may notice in the previous activities that sometimes
the code gets long. And sometimes, it is difficult to
remember some code syntax. This usually can be
solved by creating a special function that encapsulates
the lines of code and passes the parameters if needed.

In the following two activities, you will make your own
functions to draw arrows and some other shapes like a
smiley or sad face for example.

Activity 26: Draw Arrows
In this activity, you will create a function to draw the
8 arrows (North, North-East, East, South-East, South,
South-West, West or North-West) using the LED grid.

A function called drawArrow takes an argument
with the direction needed. It will then construct a
two-dimensional (2D) array with all the binary values
representing all the arrows. Each row of this matrix
represents an arrow with a specific direction. Based
on the parameter you pass; the if statement decides

which row (arrow) to display. In the main loop, the
arrows will be displayed one by one with a duration of
250 milliseconds.

You can see that the function you created can be
reused in other programs, so you do not need to lose
time writing it again.

#include <Ibtikar_IBMaker.h>
int Period = 250;

void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}

void loop() {
 drawArrow("N");
 delay(Period);
 drawArrow("NE");
 delay(Period);
 drawArrow("E");
 delay(Period);
 drawArrow("SE");

80 81

 delay(Period);
 drawArrow("S");
 delay(Period);
 drawArrow("SW");
 delay(Period);
 drawArrow("W");
 delay(Period);
 drawArrow("NW");
 delay(Period);
}

void drawArrow(String Dir) {
 int j;
 byte dirArray[][5] = {
 {B00111000 , B00011000 , B00101000 , B01000000 , B10000000},
 {B11100000 , B11000000 , B10100000 , B00010000 , B00001000},
 {B00100000 , B01110000 , B10101000 , B00100000 , B00100000},
 {B10000000 , B01000000 , B00101000 , B00011000 , B00111000},
 {B00001000 , B00010000 , B10100000 , B11000000 , B11100000},
 {B00100000 , B00100000 , B10101000 , B01110000 , B00100000},
 {B00100000 , B00010000 , B11111000 , B00010000 , B00100000},
 {B00100000 , B01000000 , B11111000 , B01000000 , B00100000}
 };

 if (Dir == "NE") // NorthEast
 j = 0;
 else if (Dir == "NW") // NorthWest
 j = 1;
 else if (Dir == "N") // North
 j = 2;
 else if (Dir == "SE") // SouthEast
 j = 3;
 else if (Dir == "SW") // SouthWest

 j = 4;
 else if (Dir == "S") // South
 j = 5;
 else if (Dir == "E") // East
 j = 6;
 else if (Dir == "W") // West
 j = 7;

 for (int i = 0; i <= 4; i++) {
 IBMaker.setRow(i, dirArray[j][i]);
 }
}

Activity 27: Draw Shapes
In this activity, you will create a function to draw 6
shapes (a rectangle, a square, a diamond, a smiley
face, a neutral face and a sad face) using the LED grid.

A function called drawShape takes an argument
with the shape needed. It will then construct a two-
dimensional (2D) array with all the binary values
representing all the shapes. Each row of this matrix
represents a certain shape. Based on the parameter
you pass; the if statement decides which row (shape)
to display. In the main loop, the three faces will only
be displayed one by one with a duration of 500
milliseconds.

Like the previous activity, you can reuse this function
in other programs, so you do not need write it again.

#include <Ibtikar_IBMaker.h>
int Period = 500;
void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}

void loop() {
 drawShape(":)");
 delay(Period);

82 83

 drawShape(":|");
 delay(Period);
 drawShape(":(");
 delay(Period);
}
void drawShape(String Shape) {
 int j;
 byte shapeArray[][5] = {
 {B00000000 , B11111000 , B10001000 , B11111000 , B00000000},
 {B11111000 , B10001000 , B10001000 , B10001000 , B11111000},
 {B00100000 , B01010000 , B10001000 , B01010000 , B00100000},
 {B00000000 , B01010000 , B00000000 , B10001000 , B01110000},
 {B00000000 , B01010000 , B00000000 , B11111000 , B00000000},
 {B00000000 , B01010000 , B00000000 , B01110000 , B10001000}
 };
 if (Shape == "Rec") // Rectangle
 j = 0;
 else if (Shape == "Sqr") // Square
 j = 1;
 else if (Shape == "Dmd") // Diamond
 j = 2;
 else if (Shape == ":)") // Smiley Face
 j = 3;
 else if (Shape == ":|") // Neutral Face
 j = 4;
 else if (Shape == ":(") // Sad Face
 j = 5;

 for (int i = 0; i <= 4; i++) {
 IBMaker.setRow(i, shapeArray[j][i]);
 }
}

Adding More Sensors

Using the Maker touch pads and the crocodile cables
that come with the Maker, you can interface more
components. This means that if you need a sensor
that does not come with the standard Maker board,
say a motion sensor as an example, you can interface
it easily to Maker.

Activity 28: Infrared Motion Sensor
In this activity, an infrared motion
sensor is interfaced to the Maker
board and based on its digital input
value, a message is displayed on
the Serial Monitor.

A PIR sensor (Passive Infrared) gets activated when it
is exposed to heat from bodies that emit energy, like
humans and animals. The PIR sensor compares the
new signal with the previous signal. A change between
the readings, means there is motion.

Using the crocodile-to-female cables, connect the
sensor to the Maker as shown.

Digital
PIR V1

Upload the code to the Maker board.

int PIR_pin = 2;
void setup() {
 Serial.begin(9600);
 pinMode(PIR_pin, INPUT);
}

void loop() {
 int PIR_state = digitalRead(PIR_pin);
 if (PIR_state == 1)
 Serial.println("Motion is detected!!");
 else
 Serial.println("Nothing is moving.");
 delay(100);
}

84 85

After uploading the code to your Maker, open the Serial
Monitor. Test the motion sensor by passing your hand
over the top of the sensor (do not touch the sensor).
The PIR sensor updates its output signal based on the
variations in the infrared signal from the objects. Now
keep your hand stationary over the sensor and notice
the difference.

Activity 29: Ultrasonic Sensor
In this activity, an ultrasonic sensor is interfaced to
the Maker board and based on its digital input value
representing the distance, a message is displayed on
the Serial Monitor showing the distance in centimeters.
The LED grid will also display a face based on the
distance. If the distance is less than 30cm, a happy face
will be displayed. If the distance is between 30 and
50cm, a neutral face will be displayed. If the distance is
greater, a sad face will be displayed.

The HC-SR04 ultrasonic sensor uses sonar to
determine distance to an object. The transmitter (trig
pin) sends a high-frequency sound signal. When the
signal hits an object, it is reflected and the transmitter
(echo pin) receives it. By measuring the time it takes
the signal to reach the object and goes back to the

#include <Ibtikar_IBMaker.h>

// defines pins numbers
const int trigPin = 9;
const int echoPin = 10;

void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
 Serial.begin(9600); // Starts the serial communication
 pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
 pinMode(echoPin, INPUT); // Sets the echoPin as an Input
}

void loop() {
 int distance = Distance_in_CM(trigPin, echoPin);
 Serial.print("Distance: ");
 Serial.println(distance);

 if (distance <= 30)
 drawShape(":)");
 else if (distance > 30 && distance <= 50)
 drawShape(":|");
 else if (distance > 50)
 drawShape(":(");

delay(20);
}

void drawShape(String Shape) {
 int j;
 byte shapeArray[][5] = {

sensor and by knowing the sound speed in the air, the
distance can be found.

Using the crocodile-to-female cables, connect the
sensor to the Maker as shown.

Upload the code to the Maker board.

Put an object close to the sensor and see the output.
Now, start moving the object away from the sensor
and notice the change in the Serial Monitor and on the
LED grid.

86 87

 {B00000000 , B01010000 , B00000000 , B10001000 , B01110000},
 {B00000000 , B01010000 , B00000000 , B11111000 , B00000000},
 {B00000000 , B01010000 , B00000000 , B01110000 , B10001000}
};

 if (Shape == ":)") // Smiley Face
 j = 0;
 else if (Shape == ":|") // Neutral Face
 j = 1;
 else if (Shape == ":(") // Sad Face
 j = 2;

 for (int i = 0; i <= 4; i++) {
 IBMaker.setRow(i, shapeArray[j][i]);
 }
}

int Distance_in_CM(int trig, int echo) {
 digitalWrite(trig, LOW); // Clears the trigPin
 delayMicroseconds(2);
 // Sets the trig on HIGH state for 10 micro seconds
 digitalWrite(trig, HIGH);
 delayMicroseconds(10);
 digitalWrite(trig, LOW);
 // Reads the echo, returns the sound wave travel time in microseconds
 long duration = pulseIn(echo, HIGH);
 int distance = duration * 0.034 / 2; // Calculating the distance
 return distance;
}

Using an Interrupt

An Interrupt makes the processor respond quickly to
important events. When a certain signal is detected,
the Interrupt interrupts whatever the processor is
doing, and executes some code. Once that code has
finished, the processor goes back to where it was
originally. The interrupt service routine (ISR) should be
as short as possible with no input variables or returned
values. This means all changes must be made on
global variables.

Activity 30: Interrupt the Text Scrolling
To understand the interrupt concept,
program your Maker board to scroll
a long text and then try to press an
external button module. The button
should beep the buzzer. If you hear a
beep during the text scrolling process, then you have
succeeded. Otherwise, the button you have does not
interrupt the scrolling process and no interrupt has
happened.

Digital
Button V1

The reason you need an external button instead of the
two on-board buttons, is to connect it to one of the
interrupt pins on the Maker board. The following table
shows the pin-interrupt mapping.

Pin Interrupt
D0/RX INT2
D1/TX INT3

D2 INT1
D3 INT0

Using the crocodile-to-female cables, connect the
sensor to the Maker as shown.

88 89

Upload the following code to the Maker board. This code has no interrupt.

#include <Ibtikar_IBMaker.h>

const int buttonPin = 2; // the number of the pushbutton pin
int buttonState = 0; // variable for reading the pushbutton status

void setup() {
 IBMaker.begin("V0.00"); // or V1.00
 pinMode(buttonPin, INPUT);
}

void loop() {
 IBMaker.Leds_Str("This text is ", 100);
 IBMaker.Leds_Str("scrolling to ", 100);
 IBMaker.Leds_Str("test the interrupt", 100);
 IBMaker.Leds_Str("activity", 100);

 buttonState = digitalRead(buttonPin);
 if (buttonState) {
 IBMaker.playTone(400, 250);
 }
}

After uploading the code to your Maker, click the button and check if you hear a beep. You will notice that it may
take 30 seconds to hear a beep if you were lucky to press the button in the correct time.

Now, upload this code to the Maker which has an interrupt (INT1) on pin 2.

#include <Ibtikar_IBMaker.h>

const int buttonPin = 2; // the number of the pushbutton pin
volatile int buttonState = 0; // variable for reading the pushbutton status

void setup() {
 IBMaker.begin("V0.00"); // or V1.00
 pinMode(buttonPin, INPUT);
 attachInterrupt(1, pin_ISR, CHANGE);
}

void loop() {
 IBMaker.Leds_Str("This text is ", 100);
 IBMaker.Leds_Str("scrolling to ", 100);
 IBMaker.Leds_Str("test the interrupt", 100);
 IBMaker.Leds_Str("activity", 100);
}

void pin_ISR() {
 buttonState = digitalRead(buttonPin);
 if (buttonState) {
 IBMaker.playTone(400, 250);
 }
}

After uploading the code to your Maker, click the button and check if you hear a beep. You will notice that the buzzer
beeps at any time even during the text scrolling.

90 91

Activity 31: Accelerometer Interrupts
In addition to measuring the acceleration in the three axes as in Activity 31, the accelerometer can also generate
an interrupt when certain events happen. These events can be a single tap or double tap on the board, activity/
inactivity of the sensor, or a free fall of the board.

In Maker V0, the type of the accelerometer is ADXL345 and the Ibtikar Maker library uses a special library for this
sensor created by SparkFun Electronics. This accelerometer can generate interrupts for single or double taps or for
activity/inactivity of the sensor.

In the following code, you can choose the interrupt you like. You can change the sensor range or the taps threshold
which controls the sensitivity of the tap. You can even choose which axis to detect taps or activity on it.

#include <Ibtikar_IBMaker.h>

int state = 0;

void setup() {
 delay(2000);
 IBMaker.begin("V0.00");
 IBMaker.Enable_ADXL(true);
 Serial.begin(9600);

 ADXL_Config();
}

void loop() {
 ADXL_ISR();
 delay(10);
}

int ADXL_ISR() {
 byte interrupts = IBMaker.adxl.getInterruptSource();
 int state_old = state;
 if (IBMaker.adxl.triggered(interrupts, ADXL345_DOUBLE_TAP)) {
 state = 1;
 Serial.println("*** Double Tap - Maker V0 ***");
 }
 else if (IBMaker.adxl.triggered(interrupts, ADXL345_SINGLE_TAP)) {
 state = 2;
 Serial.println("*** Single Tap - Maker V0 ***");
 }
 else if (IBMaker.adxl.triggered(interrupts, ADXL345_ACTIVITY)) {
 state = 3;
 Serial.println("*** Activity - Maker V0 ***");
 }
 else if (IBMaker.adxl.triggered(interrupts, ADXL345_INACTIVITY)) {
 state = 4;
 Serial.println("*** Inactivity - Maker V0 ***");
 }
 if (state_old == state) {
 state = 0;
 }
}
void ADXL_Config() {
 IBMaker.adxl.powerOn(); // Power on the ADXL345

 // The range settings:2g,4g,8g or 16g
 // Higher val = wider measurement range
 // Lower val = greater sensitivity
 IBMaker.adxl.setRangeSetting(16);

 // Detect activity in all the axes(X, Y, Z):(1 = ON, 0 = OFF)
 IBMaker.adxl.setActivityXYZ(1, 1, 1);

92 93

 // Set activity threshold (0-255):62.5mg/increment
 IBMaker.adxl.setActivityThreshold(75);

 // Detect inactivity in all the axes(X, Y, Z):(1 = ON, 0 = OFF)
 IBMaker.adxl.setInactivityXYZ(1, 1, 1);

 // Set inactivity threshold (0-255):62.5mg/increment
 IBMaker.adxl.setInactivityThreshold(75);

 // How many seconds of no activity is inactive
 IBMaker.adxl.setTimeInactivity(8);

 // Detect taps in the directions turned ON(X, Y, Z) (1 = ON, 0 = OFF)
 IBMaker.adxl.setTapDetectionOnXYZ(0, 0, 1);

 // Set values for what is considered a TAP or a DOUBLE TAP (0-255)
 IBMaker.adxl.setTapThreshold(130); // 62.5 mg per increment
 IBMaker.adxl.setTapDuration(15); // 625 μs per increment
 IBMaker.adxl.setDoubleTapLatency(80); // 1.25 ms per increment
 IBMaker.adxl.setDoubleTapWindow(200); // 1.25 ms per increment

 // Setting all interupts to take place on INT1 pin
 IBMaker.adxl.setImportantInterruptMapping(1, 1, 1, 1, 1);

 // Turn on Interrupts for each mode (1 == ON, 0 == OFF)
 IBMaker.adxl.InactivityINT(1);
 IBMaker.adxl.ActivityINT(1);
 IBMaker.adxl.doubleTapINT(1);
 IBMaker.adxl.singleTapINT(1);
}

In Maker V1, the accelerometer can generate interrupts for single or double taps or a free fall of the board. The type
of the accelerometer is LIS3DH and the Ibtikar Maker library uses a special library for this sensor created by Adafruit
Industries.

In the following code, you can detect one of the three interrupt types by choosing the mode value. Based on which
mode you choose; the interrupt will be configured. You can change the sensor range or the taps threshold which
controls the sensitivity of the tap.

#include <Ibtikar_IBMaker.h>

void setup() {
 Serial.begin(9600);
 IBMaker.begin("V1.00");
 IBMaker.Enable_ADXL(true);

 IBMaker.setAccelRange(LIS3DH_RANGE_2_G); // 2, 4, 8 or 16 G!

 // Choose the AXL interrupt mode:
 // 0 = turn off click detection & interrupt
 // 1 = single click only interrupt output
 // 2 = double click only interrupt output, detect single click
 // 3 = free fall only interrupt output, free fall
 // Adjust threshold, higher numbers are less sensitive
 int mode = 1;

 byte CLICKTHRESHHOLD = 100;

 if (mode == 1) {
 IBMaker.setAccelTap(mode, CLICKTHRESHHOLD);
 attachInterrupt(digitalPinToInterrupt(IBPIN_ACCE_INTE_V1), tapTime_single, CHANGE);

94 95

 } else if (mode == 2) {
 IBMaker.setAccelTap(mode, CLICKTHRESHHOLD);
 attachInterrupt(digitalPinToInterrupt(IBPIN_ACCE_INTE_V1), tapTime_double, CHANGE);
 } else if (mode == 3) {
 IBMaker.setAccelTap(mode);
 attachInterrupt(digitalPinToInterrupt(IBPIN_ACCE_INTE_V1), tapTime_freefall, CHANGE);
 } else {
 IBMaker.setAccelTap(0);
 }
}

void loop() {
}

void tapTime_single(void) {
 Serial.println("*** Single Tap - Maker V1 ***");
 IBMaker.clear_event();
}
void tapTime_double(void) {
 Serial.println("*** Double Tap - Maker V1 ***");
 IBMaker.clear_event();
}
void tapTime_freefall(void) {
 Serial.println("*** Free Fall - Maker V1 ***");
 IBMaker.clear_event();
}

Maker Servo/Expansion Shield
Why Do We Need It?

While building any electronic system, you might need to add other input and output
modules to your system. Sometimes the module you need to add, like a big servo motor,
requires more power than what the Maker can supply. Supplying the servo motor from
the Maker directly can burn the board.

To make it easy to connect these modules to the Maker board, you need to use the
Maker Servo/Expansion Shield. This shield works as a bridge between the Maker and
the other modules and allows to you supply them with an external power supply.

+ =

96 97

After connecting the Maker Expansion Shield onto
the back of the Maker board you can use the other
modules easily (input and output). Input is when the
microcontroller receives a signal from an input module
(a sensor), and output is when the microcontroller
sends a signal to an output module (an actuator).

On the shield, there are different pin categories:
the red and black pins stand for the 5V and ground
respectively. The yellow and blue pins are explained in
the following table.

Pin Digital
(I/O)

Analog
(I)

Analog-
PWM (O)

D0 0
D1 1
D2 2
D3 3 *
D6 6 A7 *
D9 9 A9 *
D10 10 A10 *
D12 12 A11

Powering the Shield

The shield has a sliding switch that allows you to either
power the board from the external connecter of the
shield or from the external connector of the Maker itself.
The power from the micro USB is not connected to
the 5V pins on the shield. This means that even if the
Maker board is running via the USB cable, there is still
no power in the shield regardless of the slide switch
position.

If you want to use some of the modules which do
not require a lot of power, you can use a female-to-
crocodile cable and connect the female pin to one of
the 5V pins on the shield. The other side of the cable
connects to the 5V pad on the Maker (near button B).
Do this at your own risk.

Activities

Activity 32: 9g Micro Servomotor
A servomotor is a rotary actuator that
allows for exact rotary positioning. It
consists of an electric motor with a
feedback system to detect the position.
The servo motor that comes in the
Ibtikar Discovery Kit has a limited range of 0-180
degrees of rotation.

Connect the servo motor to the Maker as shown.

Dealing with Digital Signals

All the pins on the shield can be used as digital I/O pins
based on the defined pin mode in the code, input or
output. These pins can be defined directly using their
numbers in the IDE code as input or output.

Dealing with Analog Signals

For the analog I/O, there are specific pins used to send
signals and others used to receive. Unlike the digital
pins, the same pin cannot be used for sending or
receiving analog signals.

Pins D6, D9, D10, D12 are used to read analog signals
as A7, A9, A10 and A11 respectively while the pins
included within the PWM category are used to send a
signal that gives an analog behaviour to the actuator.
These are D3, D6, D9 and D10.

98 99

Upload the code to the Maker board.

#include <Servo.h>
Servo myservo;

int pos = 0;

void setup() {
 myservo.attach(9);
}

void loop() {
 for (pos = 0; pos <= 180; pos += 1) {
 myservo.write(pos);
 delay(20);
 }
 for (pos = 180; pos >= 0; pos -= 1) {
 myservo.write(pos);
 delay(20);
 }
}

After uploading the code to your Maker, the servo
motor will start rotating from 0-180 degrees and then
go back to 0 degrees.

Activity 33: Analog Rotation Sensor
In this activity, we will interface an
analog rotation sensor to the Maker
board and display the analog input
value on the Serial Monitor. Since
this is a sensor with an analog value, then it must be
interfaced with one of the Maker analog input pins.

An analog rotation sensor (or a potentiometer)
consists of a fixed value resistor and a rotating wiper.
Manipulating the wiper will divide the fixed value
resistor into two parts. Its main use is as a variable
resistor or voltage divider.

If you recall the table with all the pin pads functions,
you can see that 4 pins can be used to read an analog
sensor. These are D6, D9, D10 and D12. It is important
to use the correct pin name when dealing with analog
since D6 is A7 and D12 is A11.

Analog
Rotation V1

Connect the potentiometer to the Maker as shown.

Upload the code to the Maker board.

void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
}
void loop() {
 int sensorValue = analogRead(A7);
 float voltage = sensorValue * (5.0 / 1023.0);

 // print out the value you read:
 Serial.print(sensorValue);

100 101

 Serial.print(" , ");
 Serial.println(voltage);

 delay(10); // delay between reads for stability
}

After uploading the code to your Maker, open the Serial Monitor, then rotate the analog rotation sensor. The Serial
Monitor displays two values with a comma separating them. The first value is the value of the rotational sensor
read by the analog to digital converter (ADC) module in the Maker which varies between 0 and 1023. The second
value is the mapped voltage with respect to the ADC value since the 0 read by the ADC corresponds to 0V and the
maximum value which is 1023 corresponds to 5V.

Upload the code to the Maker board.

void setup() {
 pinMode(6, INPUT);
 pinMode(9, INPUT);
 pinMode(10, INPUT);
 Serial.begin(9600);
}

int count = 0;
boolean A, B;

void loop() {
 if (digitalRead(10) == HIGH) {
 count = 0;
 Serial.println(count);
 delay(100);
 }

 ReadEnc();
 while (A == 1 && B == 0) {
 ReadEnc();
 if (A == 1 && B == 1) {
 count--;
 Serial.println(count);
 break;
 }
 }

 while (B == 1 && A == 0) {
 ReadEnc();

Activity 34: Digital Rotation Sensor
In this activity, a digital rotation
sensor (encoder) is interfaced to the
Maker board and based on its digital
input value, a counter will increment
or decrement its value on the Serial
Monitor.

A digital rotation sensor (or an encoder) is an electro-
mechanical device that senses the rotary motion
(position and speed for instance) from an axis and then
sends an electrical signal to the microcontroller.

Connect the encoder sensor to the Maker as shown.

Digital
Rotation V1

+5V

DT

SW

CLK

GND

D9
D10
D6

+5V
GND

 if (A == 1 && B == 1) {
 count++;
 Serial.println(count);
 break;
 }
 }
}

void ReadEnc (void) {
 A = digitalRead(6);
 B = digitalRead(9);
 delay(1);
}

After uploading the code to your Maker, open the
Serial Monitor, then rotate the digital rotation sensor
clockwise and counter clockwise. The Serial Monitor
displays the value of the rotational sensor. You can
reset the value of the counter to 0 by pressing the
knob itself.

102 103

Activity 35: 7-Segment & Shift-Out
Modules

one to the input socket of the second one.

In the 7-segment display, each LED receives its signal
from the shift-out module in a binary form 0 or 1. For
example, if the displayed number is 1 it means there
are only two LEDs which are ON since the number 1
has two segments only (segments b and c).

a

b

c

f

e

g

d P

The Ibtikar 7-segment which comes in the Discovery
Kit has a special hardware connection that makes the
8 embedded LEDs work when sending logic 0 to them
not 1. This connection is called the Common Anode.
This means if number 1 is to be displayed, the binary
representation will be 11111001 since the order of the 8
segments which needs to be sent is Pgfedcba.

Attach the 7-segment module on top of the shift-out
module. The 7-segment module pins must match the
coloured pins of the shift-out module as shown.

Digital
7Seg. V1

- +

�

�
,QSXW

2XWSXW

* ��9 '

'LJLWDO
6KLIWRXW
9

�

1

1
Input

Output

G +5V D

Digital
Shiftout V1 Digital

7Seg. V1

- ++ =

Use the jumper wires to connect the shift-out module
to the Maker Expansion shield per the following input
pin assignment: Wire the 3 input signals to any digital
pin on the shield. For the power lines use any VCC and
GND pin on the shield.

Digital
7Seg. V1

- +

7-Segment

1

1
Input

Output

G +5V D

Digital
Shiftout V1

Shift-Out

The 7-segment display has 8
embedded LEDs combined into
one package as one digital digit;
7 for the segments and 1 for the
decimal point. To control all LEDs,
you need 8 pins from the Maker.
Luckily, you can use the shift-out
module.

The shift-out module has an
electronic chip that controls a
certain number of parallel outputs

using binary signals. It can control many devices
with less input wires. The module can control up to 8
outputs using only 3 inputs which makes it an ideal
solution to control the 7-segment display with 3 wires
instead of 8. The shift-out module outputs a Byte of
data (8 Bits), where each bit can either be 0 or 1.

The shift-out module has an input socket and an
output socket. The input socket will be connected to
Maker. If it happens that you have another 7-segment
and shift-out module, you can drive them using the
same pins by connecting the output socket of the first

D6
D9

D10
+5V
GND

Clock

Latch

Data

+5V

Ground

NC

Input

104 105

Upload the code to the Maker board.

int clockPin = 10;
int latchPin = 9;
int dataPin = 6;

byte numberArray[] = {
 B11000000, B11111001, B10100100, B10110000, B10011001,
 B10010010, B10000010, B11111000, B10000000, B10011000 };

void setup() {
 pinMode(latchPin, OUTPUT);
 pinMode(dataPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
}

void loop() {
 for (int i = 0; i <= 9; i++) {
 digitalWrite(latchPin, LOW);
 // shift the bits out:
 shiftOut(dataPin, clockPin, MSBFIRST, numberArray[i]);
 // turn on the output so the LEDs can light up:
 digitalWrite(latchPin, HIGH);
 delay(500);
 }
}

After uploading the code to your Maker, the 7-Segment module will display the numbers from 0 to 9 with a delay of
half a second. This will repeat forever.

Activity 36: Temperature and Humidity Sensor (DHT 11)
This sensor is used for measuring the temperature and the amount of the humidity in the air. The
sensor sends the two values at the same time. The sampling rate for this sensor is 1 Hz or 1 reading
per second.

Before using this module, you need to add its library. Without the library, you cannot use this
sensor as it is not included by default in the Arduino IDE.

To import this library to the Arduino IDE, go to Sketch > Include Library > Add .ZIP Library … > browse your computer
files then select the library .ZIP extension (DHT-lib.zip). This library can be downloaded from different sites on the
internet.

Connect the temperature and humidity sensor to the Maker as shown.

Analog
Humidity V1

106 107

Upload the code to the Maker board.

#include <dht.h>
dht DHT;
#define DHT11_PIN 6

void setup() {
 Serial.begin(9600);
 while (!Serial);
 Serial.println("Humidity (%),\tTemperature (C)");
}

void loop() {
 DHT.read11(DHT11_PIN);
 Serial.print(DHT.humidity, 1);
 Serial.print(",\t");
 Serial.println(DHT.temperature, 2);
 delay(1000);
}

Once you download this code to your Maker, open the Serial Monitor to read the temperature and humidity values.
Blow air on the sensor and notice the change in the values. You also can use the Serial Plotter which is a very useful
tool in such situations when you want to see the overall change for a measured value or values.

Activity 37: Infrared (IR) Kit-Part 1

Digital
IR V1

Digital
IR TX V1

+

INPUT MUTE

SCAN

VOL- VOL+ EQ

0 100+ RPT

1 2 3
4 5 6
7 8 9

IR Transmitter

IR Receiver Remote Control

IR stands for Infra-Red: It is a light that cannot be seen by the
human’s eye; it has a wavelength higher than our eyes’ ability to
detect. This wavelength can be detected by an IR sensor/receiver
that decodes the light pulses into digital patterns of 0’s and 1’s.

The IR kit consists of three main items; the transmitter, the receiver
and the remote control. The transmitter has an IR LED light, that
emits a series of IR digital pulses as a set of Highs and Lows at a
certain frequency.

The remote control has an IR LED as well but with buttons. Each
button on the remote control sends a different digital pattern of 0’s and 1’s that can be generated by an integrated
circuit.

The IR receiver module decodes the pulses received from the IR transmitter (either the transmitter module itself or
the remote control), into a digital series of 0’s and 1’s which can be used to perform a certain task.

Before using these modules, you need to add its library. Without the library, you cannot use these modules as it is
not included by default in the Arduino IDE.

To import this library to the Arduino IDE, go to Sketch > Include Library > Add .ZIP Library … > browse your computer
files then select the library .ZIP extension (IRremote-2.2.3.zip). This library can be downloaded from different sites
on the internet.

Connect the IR receiver sensor to the Maker as shown.

108 109

INPUT MUTE

SCAN

VOL- VOL+ EQ

0 100+ RPT

1 2 3
4 5 6
7 8 9

Upload the code to the Maker board.

#include <IRremote.h>

int RECV_PIN = 12;

IRrecv irrecv(RECV_PIN);
decode_results results;

void setup() {
 Serial.begin(9600);
 irrecv.enableIRIn(); // Start the receiver
}

void loop() {
 if (irrecv.decode(&results)) { // check if any key is pressed
 String stringOne = String(results.value, HEX);
 Serial.println(stringOne);
 irrecv.resume(); // Receive the next value
 }
}

After uploading the code to your Maker, open the Serial Monitor, then press the keys of the remote control while
you are pointing it toward the IR receiver. You should see HEX values similar to what you see below. If you are
using a different remote control, you will see different values.

INPUT MUTE
SCAN

VOL- VOL+ EQ

0

100+ RPT

1 2 3 4 5 6 7 8 9
ffa25d ff02fdffe21d ffe01f ff9867ff629d ffc23d ff906fff22dd ffa857 ffb04f

ff6897 ff10efff18e7 ff5aa5 ff4ab5ff30cf ff38c7ff7a85 ff42bd ff52ad

If you are using the remote control for the first time, make sure you remove the small plastic piece that is attached
to the battery compartment.

Now, use the following code to control the built-in LED, NeoPixels and buzzer using the remote control. In this
activity, seven buttons are only used but you can use the buttons you prefer.

110 111

#include <IRremote.h>
#include <Ibtikar_IBMaker.h>

int RECV_PIN = 12;

IRrecv irrecv(RECV_PIN);
decode_results results;

void setup() {
 IBMaker.begin("V0.00"); // or V1.00
 IBMaker.clearPixels();
 irrecv.enableIRIn(); // Start the receiver
}

void loop() {
 if (irrecv.decode(&results)) { // check if any key is pressed
 String stringOne = String(results.value, HEX);
 irrecv.resume(); // Receive the next value

 if (stringOne == "ff6897") All_Neo(0); //0 key
 else if (stringOne == "ff30cf") All_Neo(1); //1 key
 else if (stringOne == "ff18e7") All_Neo(2); //2 key
 else if (stringOne == "ff7a85") All_Neo(3); //3 key
 else if (stringOne == "ffa857") IBMaker.ledbuiltin(HIGH); //VOL+ key
 else if (stringOne == "ffe01f") IBMaker.ledbuiltin(LOW); //VOL- key
 else if (stringOne == "ff906f") IBMaker.playTone(500, 250); //EQ key
 }
}

void All_Neo(int CLR) {
 int R = 0, G = 0, B = 0;

 if (CLR == 1)
 { R = 160; G = 200; B = 0; } // Yellow
 else if (CLR == 2)
 { R = 0; G = 0; B = 255; } // Blue
 else if (CLR == 3)
 { R = 128; G = 0; B = 128; } // Pink

 for (int i = 0; i < 10; i++)
 IBMaker.setPixelColor(i, IBMaker.colorWheel(R, G, B));
}

Once you click the VOL+ button, the built-in LED on
the Maker board will be ON. Click the VOL- button to
turn it OFF. The EQ button plays a tone. Buttons 0, 1,
2, and 3 control the NeoPixels.

Similarly, you can use any other key to do different
tasks by checking its HEX value.

Activity 38: Infrared (IR) Kit-Part 2
To test the transmitter and receiver, you will need
2 boards. The first board is the Maker and it has the
exact same code from part 1. The second board is an
Arduino Leonardo board and it will have a code that
sends the HEX values which turns the LED ON and
OFF. The IR sender module must be connected to pin
13 as it is internally defined for the Arduino Leonardo
in the IR library. If you are using an Arduino Uno, then
you must connect the module to pin 3.

112 113

Connects the boards as shown. Upload the code to the Arduino Leonardo board.

#include <IRremote.h>
IRsend irsend;

void setup() {
}

void loop() {
 irsend.sendNEC(0xffa857, 32);
 delay(1000);
 irsend.sendNEC(0xffe01f, 32);
 delay(1000);
}

After uploading the codes to your Maker and Arduino
boards, the built-in LED will turn ON and OFF each
second. If it is not blinking, make sure the modules are
facing each other.

Since the same HEX values from the remote control
are used, you can use the remote control as well. Cover
the IR sender module with your hand. This will make
the LED stop blinking. You can now control it manually
using the remote control as in part 1. If you click the
VOL+ button, the built-in LED will be ON and if you
click the VOL- button it will turn it OFF. You can use the
remote-control buttons 0 to 3 to control the NeoPixels
as well.

114 115

Maker Speaks Python
What is Python?

To be able to do the coming activities, you will need to
install some packages to the code. If these packages
are not already installed to your Python, you will need
then to install them yourself. Installing packages to
Python is well documented online.

Make sure you have the following packages before
you start:

 � pyserial

 � numpy

 � scipy

 � matplotlib

 � drawnow

Python and the Ibtikar Maker Board

Using a Python library called pySerial, Python can be
used to connect serially to your Maker board which
allows you to use all the capabilities of Python installed
on your computer. Unlike Arduino IDE and Ardublockly
which install the code and write it to Maker directly;
PySerial allows you to send and receive data between
your computer and the Maker. This means that the

Maker should be programmed with a certain Arduino
program allowing it to send and receive data serially.

To make this process easy, you can use the Ibtikar
Serial (IBSerial) library which uses the pySerial with
all the Maker functions and many Arduino commands
implemented in Python. This library is intended to
mirror the Maker Arduino functions and use them in
Python. On the Arduino side, the Ibtikar Serial library
can be used to program Maker with code that allows
for the communication between your Python code
and the Arduino Maker library.

To start using the Maker with Python, follow these
steps:

1. Ensure you have Python and Arduino IDE installed
on your computer.

2. If the libraries are not already installed, copy the
Ibtikar_IBMaker and Ibtikar_IBSerial libraries to
the Arduino IDE library folder.

3. Copy the IBserial.py to the Python library folder.

4. Upload the SerialMaker.ino sketch to your Maker
board using the Arduino IDE.

Python is a widely used high-level programming
language for general-purpose programming, which
was first released in 1991. It has a design philosophy
which emphasizes code readability, and a syntax (a set
of rules) which allows programmers to show concepts
in fewer lines of code compared to other languages.

This programming language is famous for being
delimited by indentation rather than being delimited by
curly braces. Indenting a line is like adding an opening
curly brace, and de-denting is like a closing curly brace.

Python supports modules and packages, which
encourages program modularity and code reuse.
The Python interpreter and the extensive standard
library are both available without charge for all major
platforms and can be freely distributed.

Python is used in many application domains. Some of
these applications are:

 � Scientific and Numeric Computing.

 � Web and Internet Development.

 � Education: for teaching programming, both at the
introductory level and in more advanced courses.

 � Software Development: Python is often used as
a support language for software developers, for
testing and for many other tasks.

For more information or to install the latest version
of Python, you can visit the Python official website:
www.python.org

For tutorials on Python, you can visit this great website
as well: www.learnpython.org

All the following activities have been tested on the
latest Python release. At the time of writing this guide,
the latest Python version is 3.7.1rc1.

116 117

5. Write your Python program to control Maker
the way you like. You can always start from the
blank.py file which contains the header name and
serial configurations.

This is what the blank.py file looks like.

**

import time
from IBSerial import *
import IBSerial as IBMaker

open the COM port
IBMaker.Open_Port("COM13","115200")

map pinMode
IBMaker.PinMAP("MAKER")

IBMaker.begin("V0.00") ## or “V1.00”

Write your code here

close the COM port
IBMaker.Close_Port()

In this file, there are a couple of things you must pay
attention to. These are:

 � The COM port number may differ based on which
COM the board is connected to.

 � The Baud rate is 115200 which matches the one in
the SerialMaker.ino sketch.

 � The PinMAP function maps the Maker pins to allow
you to use them as digital or Analog and to read or
write to them.

 � Based on which version of Maker you have, you
need to specify the number. This function is similar
to the one in the Arduino activities.

 � The last line is to close the COM port once you
finish the instructions.

Activity 39: LED Blink in Python
This activity shows how to blink the built-in LED in
Python and compare it with the one in Arduino. All
functions related to Maker are made similar to the
Arduino ones.

First recall how to blink the built-in LED in Arduino
(Activity 2).

#include <Ibtikar_IBMaker.h>

void setup() {
 IBMaker.begin("V0.00"); // or "V1.00"
}

void loop() {
 IBMaker.ledbuiltin(HIGH);
 delay(1000);
 IBMaker.ledbuiltin(LOW);
 delay(1000);
}

Now, try this code to blink the built-in LED in Python.
But first, do not forget to upload the SerialMaker.ino
sketch to your board.

import time
from IBSerial import *
import IBSerial as IBMaker

open the COM port
IBMaker.Open_Port("COM13","115200")

map pinMode
IBMaker.PinMAP("MAKER")

IBMaker.begin("V0.00") ## or “V1.00”

while(1):
 IBMaker.ledbuiltin(HIGH)
 time.sleep(1)
 IBMaker.ledbuiltin(LOW)
 time.sleep(1)

The COM port in this example is 13 which may differ
from the one your Maker is connected to. The main
code is almost the same as the one in Arduino except
for the delay function. In Python, the delay has a
function called sleep which is defined in the time
library. This function accepts the sleep time in the unit
in seconds unlike the Arduino delay function which
accepts the value in milliseconds.

118 119

Since the program will enter the while loop and stay
there forever, there is no need to add the part where
you close the COM port.

Points to Keep in Mind

 � Activity 1 to Activity 28, Activity 33 and Activity 35
are implemented in the exact same way the original
Arduino activities are implemented.

 � Some Arduino commands are implemented in the
Python IBSerial library to make it easier for you,
such as the map function in Activity 16 and the
shiftOut function in Activity 35.

 � For some activities where you need to import an
Arduino specific library or implement a function
directly in Arduino, you will need to include the extra
required library or functions in the SerialMaker.ino
sketch and upload them to the Maker first. These
activities are Activity 29, Activity 32, Activity 36.

 � Since the Python IBSerial library depends on the
serial communication, you should expect a short
delay. Based on the activity you are trying to do;
the effect of the delay will vary. For most of the
activities, the delay effect is negligible. In Activity

10 and 11 the delay only slightly affects the button
counting but in Activity 34 some counts are
missing due to this delay which makes the activity
unreliable.

 � Because of the way the IbSerial library is
implemented and due to the time in which this
guide is being authored, passing interrupts from
Arduino to Python are not supported. Hence,
Activity 30 and Activity 31 are not implemented.

 � Due to the size of the IRremote library, Activity 37
and Activity 38 could not be implemented on the
Maker.

 � The codes for all these activities, including the
different versions of SerialMaker.ino sketch, are
available for download, hence there is no point in
repeating them in this guide.

Real-time Logging using Maker and Python
In this section, Python will be used to log real-time
data from the Maker board. This will show the power
of using Python with Maker. In Python, you can plot
the data received, add a timestamp to it and save it to a
file. In addition to the IBSerial and time packages, you
will need to have pyserial, numpy, matplotlib and
drawnow.

Activity 40: Accelerometer Datalogging
In this activity, the three axes of the Maker
accelerometer are read, as explained earlier in this
guide. The timestamp is added using the datetime
package. The plot is created using the matplotlib and
drawnow packages. The numpy package is needed
to handle arrays, and append and pop samples, to and
from each axis array.

 � The following block of code shows all the packages
needed. Make sure to choose the correct COM port
and version of the Maker board.

import time
from IBSerial import *
import IBSerial as IBMaker

open the COM port
IBMaker.Open_Port("COM13","115200")

map pinMode
IBMaker.PinMAP("MAKER")

IBMaker.begin("V0.00") ## or “V1.00”

import matplotlib.pyplot as plt
from datetime import datetime
from drawnow import *
import numpy as np

 � First, enable the accelerometer and specify the
number of samples needed. Say we want to read
100 samples, this means we will need to define the
arrays where the values will be stored and initialise
them with zero.

120 121

IBMaker.Enable_ADXL(true)

samples = 100

X_values = []
Y_values = []
Z_values = []

#pre-load dummy data
for i in range(0,samples+1):
 X_values.append(0)
 Y_values.append(0)
 Z_values.append(0)

To print values to a text file, you need to open the file first by specifying its name and then specify the way you are
planning to work on the file. The letter ‘a’ means append. This means that when you write a new value, it will be
appended to the end of the file rather than replacing the old value.

If the file did not exist before, it will be created then opened. Once the file is opened, you write the string values
you want. In this activity, we will write the sample number, the current date and time, the accelerometer values and
finally the end of line character. All these values are separated by commas. The following block of code shows this
function.

def printToFile(SAMPLE,TIME,X,Y,Z):
 dataFile = open('dataFile.txt', 'a')
 dataFile.write(str(SAMPLE)+','+TIME+','+str(X)+','
 +str(Y)+','+str(Z)+'\n')
 dataFile.close()

 � The following function creates the plot window by dividing the plot into three subplots (3 rows and 1 column).
For each subplot, one of the accelerometer axes is plotted with a specific style, colour, line width and marker size.

def plotValues():
 plt.subplot(3,1,1)
 plt.plot(X_values, 'o-', label='X', linewidth=2, markersize=5,
 color='cornflowerblue')
 plt.ylabel('X Value')
 plt.title('Maker Serial Data')
 plt.grid(True)
 plt.legend(loc='upper left')
 plt.xlim(0, samples)
 plt.ylim(-15, 15)

 plt.subplot(3,1,2)
 plt.plot(Y_values, 'o-', label='Y', linewidth=2, markersize=5,
 color='crimson')
 plt.ylabel('Y Value')
 plt.grid(True)
 plt.legend(loc='upper left')
 plt.xlim(0, samples)
 plt.ylim(-15, 15)

 plt.subplot(3,1,3)
 plt.plot(Z_values, 'o-', label='Z', linewidth=2, markersize=5,
 color='orange')
 plt.ylabel('Z Value')
 plt.xlabel('Samples')
 plt.grid(True)
 plt.legend(loc='upper left')
 plt.xlim(0, samples)
 plt.ylim(-15, 15)

122 123

The plot has a title, labels for plot axes, legends to show the signal name and grids for each plot. You can customise
all these properties yourself. The documentation for each package is the best place to start. They are all well
documented with lots of examples.

 � The main loop contains the commands to read the accelerometer and the current time and date. These values
are then passed to the printToFile function. The arrays have a fixed size, so the new values will be appended
at the end and the first values will be popped out, which will keep the array size the same. Then update the plot
using the drawnow function. Once the loop is finished, the COM port will be closed.

for i in range(0,samples):
 x = IBMaker.motionX()
 y = IBMaker.motionY()
 z = IBMaker.motionZ()

 Mytime = datetime.now().strftime('%Y-%m-%d,%H:%M:%S.%f')[:-3]
 printToFile(i,Mytime,x,y,z)

 X_values.append(x)
 X_values.pop(0)

 Y_values.append(y)
 Y_values.pop(0)

 Z_values.append(z)
 Z_values.pop(0)

 drawnow(plotValues)

IBMaker.Close_Port()

After combining all these parts and running the code, the plot window will open. You will see the three plots moving
to the left. Rotate your Maker and notice the change in the values. Once finished, check the folder where your
Python script is saved. You will find a new file called dataFile.txt with all the values saved.

This is how the plot looks.

124 125

Appendix 1: Arduino Driver Installation
To install the Arduino board driver to the computer, follow these steps:

 � Click on the Start Menu and then write Control Panel.

 � Open it and then navigate to System and Security.

 � Click on System and on the left panel click on Device Manager.

 � A window will pop up.

 � Under Other Devices, you will see an icon with a yellow hazard sign named Arduino Leonardo.

 � Right click on the icon named Arduino Leonardo.

 � Then click Update Driver Software.

 � Browse to the driver folder where the Arduino IDE is installed and click next.

 � Your computer will install a proper Driver for your board.

126 127

Appendix 2: Maker Commands List Python-Specific Functions

import time
from IBSerial import *
import IBSerial as IBMaker

IBMaker.Open_Port("COM_No","115200")

IBMaker.PinMAP("MAKER")

IBMaker.Close_Port()

time.sleep(time_in_seconds)

This is how you write comments

Advanced Commands

IBMaker.Echo_ON()

Arduino-Specific Functions

#include <Ibtikar_IBMaker.h>

void setup()

void loop()

Serial.begin(Baud_rate)

Serial.print(Value_to_print)

Serial.println(Value_to_print)

delay(time_in_milliseconds)

Note:

Activity 31 contains more advanced accelerometer
commands which you can refer to.

IBMaker.Echo_OFF()

IBMaker.Debug(1)

IBMaker.Debug(0)

IBMaker.Help()

TEST_WRITE(command,[expected_reply],["OK","ERROR"])

128 129

Common Functions

Initialisation

IBMaker.begin("V0.00")

IBMaker.begin("V1.00")

Built-in LED

IBMaker.ledbuiltin(state)

LED Grid

IBMaker.setLed(row, column, state)

IBMaker.setRow(row_number, 0bxxxxxxxx)

IBMaker.setColumn(column_number, 0bxxxxxxxx)

IBMaker.Leds_Num(0, duration)

IBMaker.Leds_Char('', duration)

IBMaker.Leds_Str("", duration)

IBMaker.Create_Center(x, y)

IBMaker.Move(steps)

IBMaker.Turn(CW)

IBMaker.Turn(CCW)

IBMaker.clearDisplay(0x00)

IBMaker.LEDBrightness(level)

Push Buttons

IBMaker.ButtonL()

IBMaker.ButtonR()

IBMaker.ButtonCount(IBPIN_LEFT, number_of_counts)

IBMaker.ButtonCount(IBPIN_RIGHT, number_of_counts)

Temperature Sensor

IBMaker.temperatureC()

IBMaker.temperatureF()

Light Sensor

IBMaker.Sensor_Light()

Buzzer

IBMaker.playTone(frequency, duration)

Sound Sensor

IBMaker.Sensor_Sound()

Touch Pads

IBMaker.Touch(pad_number)

pad_number: 0, 2, 3, 6, 9, 10 or 12

Accelerometer

IBMaker.Enable_ADXL(true)

IBMaker.Enable_ADXL(false)

IBMaker.motionX()

IBMaker.motionY()

IBMaker.motionZ()

130 131

NeoPixels

IBMaker.clearPixels()

IBMaker.NeoBrightness(level)

IBMaker.setPixelColor(pixel_number, IBMaker.colorWheel(R, G, B))

Read/Write Digital & Analog

pinMode(pin_number,mode)

analogWrite(pin_number,value)

analogRead(pin_number)

digitalWrite(pin_number,value)

digitalRead(pin_number)

